Advertisement

Journal of Intelligent Information Systems

, Volume 43, Issue 3, pp 437–462 | Cite as

Data-centric intelligent information integration—from concepts to automation

  • Matthias JarkeEmail author
  • Manfred Jeusfeld
  • Christoph Quix
Article

Abstract

Intelligent integration of information continues to challenge database research for over 35 years. While data integration processes of all kinds are now reasonably well understood and widely used in practice, the growth and heterogeneity of data requires much higher degrees of automation to limit the need for human specialist work. This requires deeper insights in data-centric approaches of Enterprise Information Integration which focus on the semantics of information integration. Recent formalizations and algorithms enable both significant improvement in schema integration, and in its automated transformation to efficient data-level integration, in a wide variety of architectural settings such as data warehouses or peer-to-peer databases. In addition to giving a short overview of developments in this field for the past 20 years, this paper focuses particularly on the challenges posed by heterogeneity in data models.

Keywords

Metadata Data integration Role-based model Model management 

References

  1. Abiteboul, S., Hull, R., Vianu, V. (1995). Foundations of databases. Addison-Wesley.Google Scholar
  2. Arenas, M., Barceló, P., Libkin, L., Murlak, F. (2010). Relational and XML data exchange. Synthesis lectures on data management. Morgan & Claypool Publishers.Google Scholar
  3. Arens, Y., Knoblock, C. A., & Shen, W.-M. (1996). Query reformulation for dynamic information integration. Journal of Intelligent Information Systems, 6(2–3), 99–130.CrossRefGoogle Scholar
  4. Atzeni, P., & Torlone, R. (1996). Management of multiple models in an extensible database design tool. In P. M. G. Apers, M. Bouzeghoub, & G. Gardarin (Eds.), Proc. 5th international conference on extending database technology (EDBT) (Lecture Notes in Computer Science, Vol. 1057, pp. 79–95). Avignon: Springer.Google Scholar
  5. Atzeni, P., Cappellari, P., & Bernstein, P. A. (2005). A multilevel dictionary for model management. In L. M. L. Delcambre, C. Kop, H. C. Mayr, J. Mylopoulos, & O. Pastor (Eds.), Proc. 24th international conference on conceptual modeling (ER) (Lecture Notes in Computer Science, Vol. 3716, pp. 160–175). Klagenfurt: Springer.Google Scholar
  6. Atzeni, P., Cappellari, P., & Bernstein, P. A. (2006). Model-independent schema and data translation. In Y. E. Ioannidis, M. H. Scholl, J. W. Schmidt, F. Matthes, M. Hatzopoulos, K. B¨ohm, A. Kemper, T. Grust, & C. Böhm (Eds.), Proc. 10th international conference on extending database technology (EDBT) (Lecture Notes in Computer Science, Vol. 3896, pp. 368–385). Munich: Springer.Google Scholar
  7. Atzeni, P., Bellomarini, L., Bugiotti, F., & Gianforme, G. (2009). Mism: A platform for model-independent solutions to model management problems. Journal of Data Semantics, 14, 133–161.CrossRefGoogle Scholar
  8. Aumueller, D., Do, H. H., Massmann, S., & Rahm, E. (2005). Schema and ontology matching with COMA++. In F. Ozcan (Ed.), Proceedings of the ACM SIGMOD international conference on management of data (pp. 906–908). Baltimore: ACM.Google Scholar
  9. Bachman, C.W., Daya, M. (1977). The role concept in data models. In: Proceedings of the Third International Conference on Very Large Data Bases (VLDB), pp. 464–476. IEEE-CS and ACM, Tokyo, Japan.Google Scholar
  10. Batini, C., Lenzerini, M., & Navathe, S. B. (1986). A comparative analysis of methodologies for database schema integration. ACM Computing Surveys, 18(4), 323–364.CrossRefGoogle Scholar
  11. Baumeister, M., & Jarke, M. (1999). Compaction of large class hierarchies in databases for chemical engineering. proceedings 8. gi-fachtagung für datenbanksysteme in büro, technik und wissenschaft (BTW) (pp. 343–361). Freiburg: Springer.Google Scholar
  12. Beeri, C., & Vardi, M. Y. (1984). A proof procedure for data dependencies. Journal of the ACM, 31(4), 718–741.zbMATHMathSciNetCrossRefGoogle Scholar
  13. Bergamaschi, S., Castano, S., Vincini, M., & Beneventano, D. (2001). Semantic integration of heterogeneous information sources. Data & Knowledge Engineering, 36(3), 215–249.zbMATHCrossRefGoogle Scholar
  14. Bernstein, P. A., & Haas, L. M. (2008). Information integration in the enterprise. Communications of the ACM, 51(9), 72–79.CrossRefGoogle Scholar
  15. Bernstein, P. A., & Melnik, S. (2007). Model management 2.0: Manipulating richer mappings. In L. Zhou, T. W. Ling, & B. C. Ooi (Eds.), Proc. ACM SIGMOD intl. conf. on management of data (pp. 1–12). Beijing: ACM Press. doi: 10.1145/1247480.1247482.Google Scholar
  16. Bernstein, P. A., Halevy, A. Y., & Pottinger, R. (2000). A vision for management of complex models. SIGMOD Record, 29(4), 55–63.CrossRefGoogle Scholar
  17. Bernstein, P. A., Melnik, S., Petropoulos, M., & Quix, C. (2004). Industrialstrength schema matching. SIGMOD Record, 33(4), 38–43.CrossRefGoogle Scholar
  18. Bernstein, P.A., Green, T.J., Melnik, S., Nash, A. (2006). Implementing mapping composition. In: U. Dayal, K.Y. Whang, D.B. Lomet, G. Alonso, G.M. Lohman, M.L. Kersten, S.K. Cha, Y.K. Kim (eds.) Proc. 32nd Intl. Conference on Very Large Data Bases (VLDB), pp. 55–66. ACM Press.Google Scholar
  19. Biskup, J., & Convent, B. (1986). A formal view integration method. In C. Zaniolo (Ed.), Proc. ACM SIGMOD intl. conf. on management of data (pp. 398–407). Washington: ACM Press.Google Scholar
  20. Brandt, S. C., Morbach, J., Miatidis, M., Theißen, M., Jarke, M., & Marquardt, W. (2008). An ontology-based approach to knowledge management in design processes. Computers & Chemical Engineering, 32(1–2), 320–342.CrossRefGoogle Scholar
  21. Brodie, M.L. (2010). Data integration at scale: From relational data integration to information ecosystems. In: Proc. 24th IEEE Intl. Conf. on Advanced Information Networking and Applications (AINA), pp. 2–3. IEEE Computer Society, Perth, Australia.Google Scholar
  22. Calì, A., Calvanese, D., Giacomo, G. D., & Lenzerini, M. (2004). Data integration under integrity constraints. Information Systems, 29(2), 147–163. doi: 10.1016/S0306-4379(03)00050-4.CrossRefGoogle Scholar
  23. Calvanese, D., Giacomo, G. D., Lenzerini, M., Nardi, D., & Rosati, R. (1998). Description logic framework for information integration. In A. G. Cohn, L. K. Schubert, & S. C. Shapiro (Eds.), Proceedings of the sixth international conference on principles of knowledge representation and reasoning (KR’98) (pp. 2–13). Trento: Morgan Kaufmann.Google Scholar
  24. Calvanese, D., Giacomo, G. D., Lenzerini, M., Nardi, D., & Rosati, R. (2001). Data Integration in Data Warehousing. International Journal of Cooperative Information Systems (IJCIS), 10(3), 237–271.CrossRefGoogle Scholar
  25. Casanova, M.A., Vidal, V.M.P. (1983). Towards a sound view integration methodology. In: Proc. 2nd ACM Symposium on Principles of Database Systems (PODS), pp. 36–47. ACM, Atlanta, GA.Google Scholar
  26. Cattell, R. (2010). Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4), 12–27.CrossRefGoogle Scholar
  27. Ceri, S., Pelagatti, G. (1984). Distributed databases: principles and systems. McGraw-Hill Book Company.Google Scholar
  28. Collet, C., Huhns, M. N., & Shen, W. M. (1991). Resource integration using a large knowledge base in carnot. IEEE Computer, 24(12), 55–62.CrossRefGoogle Scholar
  29. d’Aquin, M., & Motta, E. (2011). Watson, more than a semantic web search engine. Semantic Web Journal, 2(1), 55–63. http://www.semantic-web-journal.net/content/new-submission-watson-more-semantic-web-search-engine.Google Scholar
  30. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R., Peng, Y., Reddivari, P. et al. (2004). Swoogle: a search and metadata engine for the semantic web. In: Proc. CIKM.Google Scholar
  31. Do, H.H., Rahm, E. (2002). Coma -a system for flexible combination of schema matching approaches. In: Proc. 28th Intl. Conference on Very Large Data Bases (VLDB), pp. 610–621. Morgan Kaufmann, Hong Kong, China.Google Scholar
  32. Dolk, D.R. (1988). Model management and structured modeling: the role of an information resource dictionary system. Communications of the ACM 31(6).Google Scholar
  33. Duchateau, F., Coletta, R., Bellahsene, Z., & Miller, R. J. (2009). (Not) yet another matcher. In D. W. L. Cheung, I. Y. Song, W. W. Chu, X. Hu, & J. J. Lin (Eds.), Proc. 18th ACM conference on information and knowledge management (CIKM) (pp. 1537–1540). Hong Kong: ACM.Google Scholar
  34. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., & dos Santos, C. T. (2011). Ontology alignment evaluation initiative: 6 years of experience. Journal on Data Semantics, 15, 158–192.CrossRefGoogle Scholar
  35. Fagin, R., Kolaitis, P., Miller, R. J., & Popa, L. (2005a). Data exchange: Semantics and query answering. Theoretical Computer Science, 336, 89–124.zbMATHMathSciNetCrossRefGoogle Scholar
  36. Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W. C. (2005b). Composing schema mappings: Second-order dependencies to the rescue. ACM Transactions on Database Systems, 30(4), 994–1055.CrossRefGoogle Scholar
  37. Fagin, R., Haas, L.M., Hern’andez, M.A., Miller, R.J., Popa, L., Velegrakis, Y. (2009). Clio: Schema mapping creation and data exchange. In: A. Borgida, V.K. Chaudhri, P. Giorgini, E.S.K. Yu (eds.) Conceptual Modeling: Foundations and Applications, Lecture Notes in Computer Science, vol. 5600, pp. 198–236. Springer.Google Scholar
  38. Fuxman, A., Hernández, M.A., Ho, C.T.H., Miller, R.J., Papotti, P., Popa, L. (2006). Nested mappings: Schema mapping reloaded. In: U. Dayal, K.Y. Whang, D.B. Lomet, G. Alonso, G.M. Lohman, M.L. Kersten, S.K. Cha, Y.K. Kim (eds.) Proc. 32nd Intl. Conference on Very Large Data Bases (VLDB), pp. 67–78. ACM Press.Google Scholar
  39. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J. D., et al. (1997). The tsimmis approach to mediation: Data models and languages. Journal of Intelligent Information Systems, 8(2), 117–132.CrossRefGoogle Scholar
  40. Geisler, S., Quix, C., Schiffer, S., & Jarke, M. (2012). An evaluation framework for traffic information systems based on data streams. Transportation Research Part C, 23, 29–55.CrossRefGoogle Scholar
  41. Genesereth, M. R., Keller, A. M., & Duschka, O. M. (1997). Infomaster: An information integration system. In J. Peckham (Ed.), Proceedings of the ACM SIGMOD international conference on management of data (pp. 539–542). Tucson: ACM Press.Google Scholar
  42. Haas, L. M. (2007). Beauty and the beast: The theory and practice of information integration. In T. Schwentick & D. Suciu (Eds.), ICDT, lecture notes in computer science (Vol. 4353, pp. 28–43). Barcelona: Springer.Google Scholar
  43. Haas, L. M., Hernández, M. A., Ho, H., Popa, L., & Roth, M. (2005). Clio grows up: From research prototype to industrial tool. In F. Ozcan (Ed.), Proceedings of the ACM SIGMOD international conference on management of data (pp. 805–810). Baltimore: ACM.Google Scholar
  44. Halevy, A. Y. (2001). Answering queries using views: A survey. VLDB Journal, 10(4), 270–294.zbMATHCrossRefGoogle Scholar
  45. Halevy, A. Y., Ives, Z. G., Madhavan, J., Mork, P., Suciu, D., & Tatarinov, I. (2004). The piazza peer data management system. IEEE Transactions on Knowledge and Data Engineering, 16(7), 787–798. doi: 10.1109/TKDE.2004.1318562.CrossRefGoogle Scholar
  46. Haslhofer, B., Klas, W. (2010). A survey of techniques for achieving metadata interoperability. ACM Comput. Surv. 42(2).Google Scholar
  47. Hernández, M.A., Miller, R.J., Haas, L.M. (2001). Clio: A semi-automatic tool for schema mapping. In: Proc. ACM SIGMOD Intl. Conference on the Management of Data, p. 607. ACM Press, Santa Barbara, CA.Google Scholar
  48. ISO/IEC (1990). Information technology—Information Resource Dictionary System (IRDS) framework. International Standard ISO/IEC 10027:1990, ISO International Organization for Standardization.Google Scholar
  49. ISO/IEC (2005). Information technology -Meta Object Facility (MOF). International Standard ISO/IEC 19502:2005, ISO International Organization for Standardization.Google Scholar
  50. Jarke, M., Gallersdörfer, R., Jeusfeld, M. A., & Staudt, M. (1995). ConceptBase -a deductive object base for meta data management. Journal of Intelligent Information Systems, 4(2), 167–192.CrossRefGoogle Scholar
  51. Jarke, M., Jeusfeld, M. A., Quix, C., & Vassiliadis, P. (1999). Architecture and Quality in Data Warehouses: An Extended Repository Approach. Information Systems, 24(3), 229–253.CrossRefGoogle Scholar
  52. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P. (eds.) (2003). Fundamentals of data warehouses, 2 edn. Springer-Verlag.Google Scholar
  53. Jarke, M., Jeusfeld, M., Nissen, H., Quix, C., Staudt, M. (2009). Metamodelling with datalog and classes: Conceptbase at the age of 21. In: Proc. 2nd Intl. Conf. Object Databases (ICOODB 09), pp. 95–112. Springer-Verlag.Google Scholar
  54. Jean-Mary, Y. R., Shironoshita, E. P., & Kabuka, M. R. (2009). Ontology matching with semantic verification. Journal of Web Semantics, 7(3), 235–251.CrossRefGoogle Scholar
  55. Jeusfeld, M.A. (1992). Änderungskontrolle in deduktiven Objektbanken. PhD thesis, Universität Passau.Google Scholar
  56. Jeusfeld, M. A., & Johnen, U. A. (1995). An executable meta model for reengineering of database schemas. Intl. Journal of Cooperative Information Systems, 4(2–3), 237–258.CrossRefGoogle Scholar
  57. Kensche, D., Quix, C., Chatti, M.A., Jarke, M. (2007). GeRoMe: A generic role based metamodel for model management. Journal on Data Semantics VIII, 82–117.Google Scholar
  58. Kensche, D., Quix, C., Li, X., Li, Y. (2007). GeRoMeSuite: A system for holistic generic model management. In: C. Koch, J. Gehrke, M.N. Garofalakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C.Y. Chan, V. Ganti, C.C. Kanne, W. Klas, E.J. Neuhold (eds.) Proceedings 33rd Intl. Conf. on Very Large Data Bases (VLDB), pp. 1322–1325. Vienna, Austria.Google Scholar
  59. Kensche, D., Quix, C., Li, X., Li, Y., & Jarke, M. (2009). Generic schema mappings for composition and query answering. Data & Knowledge Engineering, 68(7), 599–621. doi: 10.1016/j.datak.2009.02.006.CrossRefGoogle Scholar
  60. Kerner, B., Demir, C., Herrtwich, R., Klenov, S., Rehborn, H., Aleksic, M. et al. (2005). Traffic state detection with floating car data in road networks. In: Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, pp. 700–705. Daimler Chrysler AG.Google Scholar
  61. Kirk, T., Levy, A.Y., Sagiv, Y., Srivastava, D. (1995). The Information Manifold. In: Proceedings of the AAAI 1995 Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, pp. 85–91.Google Scholar
  62. Lenzerini, M. (2002). Data integration: A theoretical perspective. In L. Popa (Ed.), Proc. 21st ACM symposium on principles of database systems (PODS) (pp. 233–246). Madison: ACM Press. doi: 10.1145/543613.543644.Google Scholar
  63. Li, X., & Quix, C. (2011). Merging relational views: A minimization approach. In M. A. Jeusfeld, L. M. L. Delcambre, & T. W. Ling (Eds.), Proc. 30th intl. conference on conceptual modeling (ER 2011) (Lecture Notes in Computer Science, Vol. 6998, pp. 379–392). Brussels: Springer.CrossRefGoogle Scholar
  64. Li, X., Quix, C., Kensche, D., & Geisler, S. (2010). Automatic schema merging using mapping constraints among incomplete sources. In J. Huang, N. Koudas, G. J. F. Jones, X. Wu, K. Collins-Thompson, & A. An (Eds.), Proc. 19th ACM conf. on information and knowledge management (CIKM) (pp. 299–308). Toronto: ACM.CrossRefGoogle Scholar
  65. Li, X., Quix, C., Kensche, D., Geisler, S., & Guo, L. (2011). Automatic generation of mediated schemas through reasoning over data dependencies. In S. Abiteboul, K. B¨ohm, C. Koch, & K. L. Tan (Eds.), Proc. 27th intl. conf. on data engineering (ICDE) (pp. 1280–1283). Hannover: IEEE Computer Society.Google Scholar
  66. Madhavan, J., & Halevy, A. Y. (2003). Composing mappings among data sources. In J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, & A. Heuer (Eds.), Proc. of 29th intl. conference on very large data bases (VLDB) (pp. 572–583). Berlin: Morgan Kaufmann.Google Scholar
  67. Melnik, S., Rahm, E., & Bernstein, P. A. (2003a). Developing metadata-intensive applications with Rondo. Journal of Web Semantics, 1(1), 47–74.CrossRefGoogle Scholar
  68. Melnik, S., Rahm, E., Bernstein, P.A. (2003). Rondo: A programming platform for generic model management. In: Proc. ACM SIGMOD Intl. Conference on Management of Data, pp. 193–204. ACM, San Diego, CA.Google Scholar
  69. Melnik, S., Bernstein, P. A., Halevy, A. Y., & Rahm, E. (2005). Supporting executable mappings in model management. In F. Ozcan (Ed.), Proceedings of the ACM SIGMOD international conference on management of data (pp. 167–178). Baltimore: ACM.Google Scholar
  70. Miller, R. J., Haas, L. M., & Hernández, M. A. (2000). Schema mapping as query discovery. In A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, & K. Y. Whang (Eds.), Proc. 26th intl. conference on very large data bases (VLDB) (pp. 77–88). Cairo: Morgan Kaufmann.Google Scholar
  71. Mork, P., Bernstein, P.A., Melnik, S. (2007). Teaching a schema translator to produce o/r views. In: Proc. 26th Intl. Conf. on Conceptual Modeling (ER’07), LNCS, vol. 4801, pp. 102–119. Springer.Google Scholar
  72. Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). Telos: Representing Knowledge About Information Systems. ACM Transactions on Information Systems, 8(4), 325–362.CrossRefGoogle Scholar
  73. Nardi, D., Brachman, R.J. (2003). An introduction to description logics. In: F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.) Description Logic Handbook. Cambridge University Press.Google Scholar
  74. Nissen, H. W., & Jarke, M. (1999). Repository Support for Multi-Perspective Requirements Engineering. Information Systems, 24(2), 131–158.CrossRefGoogle Scholar
  75. Parent, C., & Spaccapietra, S. (1998). Issues and approaches of database integration. Communications of the ACM, 41(5), 166–178.CrossRefGoogle Scholar
  76. Pottinger, R., & Bernstein, P. A. (2003). Merging models based on given correspondences. In J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, & A. Heuer (Eds.), Proc. of 29th intl. conference on very large data bases (VLDB) (pp. 826–873). Berlin: Morgan Kaufmann.Google Scholar
  77. Pottinger, R., & Halevy, A. Y. (2001). Minicon: A scalable algorithm for answering queries using views. VLDB Journal, 10(2–3), 182–198.zbMATHGoogle Scholar
  78. Quix, C. (2009). Meta data repository. In: L. Liu, M.T. Ozsu (eds.) Encyclopedia of Database Systems, pp. 1718–1722. Springer.Google Scholar
  79. Quix, C., Kensche, D., & Li, X. (2007). Matching of ontologies with xml schemas using a generic metamodel. In R. Meersman & Z. Tari (Eds.), Proc. OTM confederated international conf. CoopIS/DOA/ODBASE/GADA/IS (Lecture Notes in Computer Science, Vol. 4803, pp. 1081–1098). Vilamoura: Springer.Google Scholar
  80. Quix, C., Geisler, S., Kensche, D., Li, X.: Results of GeRoMesuite for OAEI 2008. In: Proc. 3rd Intl. Workshop On Ontology Matching (OM2008) (2008). URL http://data.semanticweb.org/workshop/om/2008/paper/main/13.
  81. Quix, C., Geisler, S., Kensche, D., & Li, X. (2009). Results of geromesuite for oaei 2009. In P. Shvaiko, J. Euzenat, F. Giunchiglia, H. Stuckenschmidt, N. F. Noy, & A. Rosenthal (Eds.), Proc. 4th intl. workshop on ontology matching (CEUR Workshop Proceedings, Vol. 551). Chantilly: CEUR-WS.org.Google Scholar
  82. Quix, C., Roy, P., Kensche, D. (2011). Automatic selection of background knowledge for ontology matching. In: Proc. Intl. Workshop on Semantic Web Information Management (SWIM), pp. 5:1–5:7. ACM, New York, NY, USA.Google Scholar
  83. Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic schema matching. VLDB Journal, 10(4), 334–350.zbMATHCrossRefGoogle Scholar
  84. Ramesh, B., & Jarke, M. (2001). Toward Reference Models of Requirements Traceability. IEEE Transactions on Software Engineering, 27(1), 58–93.CrossRefGoogle Scholar
  85. Richardson, J., Schwarz, P. (1991). Aspects: extending objects to support multiple, independent roles. In: Proc. ACM SIGMOD Intl. Conference on Management of Data, pp. 298–307. Denver, CO.Google Scholar
  86. Shmueli, O. (1993). Equivalence of datalog queries is undecidable. Journal of Logic Programming, 15(3), 231–241.zbMATHMathSciNetCrossRefGoogle Scholar
  87. Shu, N. C., Housel, B. C., Taylor, R. W., Ghosh, S. P., & Lum, V. Y. (1977). EXPRESS: A Data EXtraction, Processing, amd REStructuring System. ACM Transactions on Database Systems, 2(2), 134–174.CrossRefGoogle Scholar
  88. Shvaiko, P., Euzenat, J. (2005). A survey of schema-based matching approaches. Journal on Data Semantics IV, 146–171. LNCS 3730.Google Scholar
  89. Shvaiko, P., Euzenat, J. (2012). Ontology matching: State of the art and future challenges. IEEE Transactions on Knowledge and Data Engineering. To appear, preprint available at http://www.dit.unitn.it/~p2p/RelatedWork/Matching/SurveyOMtkde_SE.pdf.
  90. Singh, M. P., Cannata, P. E., Jacobs, N., Ksiezyk, T., Ong, K., Sheth, A. P., et al. (1997). The carnot heterogeneous database project: Implemented applications. Distributed and Parallel Databases, 5(2), 207–225.CrossRefGoogle Scholar
  91. Smith, M. (2007). Toward enterprise information integration. Software Magazine. URL http://www.softwaremag.com/content/ContentCT.aspP=3034.
  92. Spaccapietra, S., & Parent, C. (1994). View integration: A step forward in solving structural conflicts. IEEE Transactions on Knowledge and Data Engineering, 6(2), 258–274.CrossRefGoogle Scholar
  93. Staudt, M., & Jarke, M. (2000). View Management Support in Advanced Knowledge Base Servers. Journal Intelligent Information Systems, 15(3), 253–285.CrossRefGoogle Scholar
  94. Stonebraker, M. (2010). SQL databases v. NoSQL databases. Communications of the ACM, 53(4), 10–11.CrossRefGoogle Scholar
  95. Stubing, H., Bechler, M., Heussner, D., May, T., Radusch, I., Rechner, H., et al. (2010). simtd: A car-to-x system architecture for field operational tests. IEEE Communications Magazine, 48(5), 148–154.CrossRefGoogle Scholar
  96. Vogels, W. (2007). Data access patterns in the amazon.com technology platform. In: C. Koch, J. Gehrke, M.N. Garofalakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C.Y. Chan, V. Ganti, C.C. Kanne, W. Klas, E.J. Neuhold (eds.) Proceedings 33rd Intl. Conf. on Very Large Data Bases (VLDB), p. 1. Vienna, Austria.Google Scholar
  97. Wiederhold, G. (1992). Mediators in the architecture of future information systems. IEEE Computer, 25(3), 38–49.CrossRefGoogle Scholar
  98. Wiederhold, G (ed.). (1996). Special Issue on Intelligent Integration of Information. Journal of Intelligent Information Systems 6(2–3), 93–291.Google Scholar
  99. Wong, R. K., Chau, H. L., & Lochovsky, F. H. (1997). A data model and semantics of objects with dynamic roles. In A. Gray & P. A. Larson (Eds.), Proceedings of the 13th international conference on data engineering (ICDE) (pp. 402–411). Birmingham: IEEE Computer Society.CrossRefGoogle Scholar
  100. Zhou, G., Hull, R., & King, R. (1996). Generating data integration mediators that use materialization. Journal of Intelligent Information Systems, 6(2–3), 199–221.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Matthias Jarke
    • 1
    • 2
    Email author
  • Manfred Jeusfeld
    • 3
  • Christoph Quix
    • 2
  1. 1.RWTH Aachen UniversityAachenGermany
  2. 2.Fraunhofer FIT, Schloss BirlinghovenSankt AugustinGermany
  3. 3.University of Skövde, School of InformaticsSkövdeSweden

Personalised recommendations