Journal of Intelligent Information Systems

, Volume 39, Issue 3, pp 789–811 | Cite as

A computational model for the identification and assessment of structural similarities in argumentative discourses



Contemporary argumentation systems provide limited or no support for argument and related information processing. This paper presents a generic computational model that is able to identify and assess structural similarities in argumentative discourses. Focusing on the structure of such discourses, we sketch representative scenarios where the proposed model can be applied to a wide range of argumentation systems in order to define, elaborate and mine meaningful argumentation patterns. We argue that the proposed model contributes to both theoretical and practical aspects of argumentation.


Similarity Knowledge discovery Reasoning Pattern Argumentation 


  1. Aamodt, A., & Plaza, E. (1994). Case-based reasoning. In Proc. MLnet summer school on machine learning and knowledge acquisition (pp. 1–58).Google Scholar
  2. Avouris, N., Dimitracopoulou, A., Komis, V., & Fidas, C. (2002). OCAF: An object-oriented model of analysis of collaborative problem solving. In Computer support for collaborative learning: Foundations for A Cscl Community (cscl 2002 Proceedings) (p. 92).Google Scholar
  3. Baker, M. (1999). Argumentation and constructive interaction. Foundations of Argumentative Text Processing, 5, 179–202.Google Scholar
  4. Barrow, H. G., & Burstall, R. M. (1976). Subgraph isomorphism, matching relational structures and maximal cliques. Information Processing Letters, 4(4), 83–84.MATHCrossRefGoogle Scholar
  5. Bomze, I. M., Budinich, M., Pardalos, P. M., & Pelillo, M. (1994). The maximum clique problem. Journal of Global Optimization, 4(3), 301–328.Google Scholar
  6. Bruno, N., Koudas, N., & Srivastava, D. (2002). Holistic twig joins: Optimal xml pattern matching. In Proceedings of the 2002 ACM SIGMOD international conference on management of data, SIGMOD ’02 (pp. 310–321). Madison, Wisconsin: ACM. ISBN: 1-58113-497-5.CrossRefGoogle Scholar
  7. Bunke, H. (1998). A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters, 19(3–4), 255–259.MATHCrossRefGoogle Scholar
  8. Caminada, M., & Amgoud, L. (2007). On the evaluation of argumentation formalisms. Artificial Intelligence, 171(5–6), 286–310.MathSciNetMATHCrossRefGoogle Scholar
  9. Chesñevar, C., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., et al. (2006). Towards an argument interchange format. The Knowledge Engineering Review, 21(4), 293–316.CrossRefGoogle Scholar
  10. Conklin, J., & Begeman, M. L. (1987). gIBIS: A hypertext tool for team design deliberation. In Proceedings of the ACM conference on hypertext. HYPERTEXT ’87 (pp. 247–251). Chapel Hill, North Carolina, United States: ACM. ISBN: 0-89791-340-X.CrossRefGoogle Scholar
  11. Conte, D., Foggia, P., Sansone, C., & Vento, M. (2004). Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence, 18(3), 265–298.CrossRefGoogle Scholar
  12. De Groot, R., Drachman, R., Hever, R., Schwarz, B., Hoppe, U., Harrer, A., et al. (2007). Computer supported moderation of e-discussions: The ARGUNAUT approach. In C. A. Chinn, G. Erkens, & S. Puntambekar (Eds.), Proceedings of the Conference on Computer Supported Collaborative Learning (CSCL-07) (Vol. 8, pp. 165–167). International Society of the Learning Sciences.Google Scholar
  13. Dimitracopoulou, A., Petrou, A., Martinez, A., Marcos, J. A., Kollias, V., Jermann, P., et al. (2006). State of the art of interaction analysis for metacognitive support & diagnosis. In Interaction Analaysis (IA) JEIRP deliverable D.31.1.1. Google Scholar
  14. Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–357.MathSciNetMATHCrossRefGoogle Scholar
  15. Fesakis, G., Petrou, A., & Dimitracopoulou, A. (2003). Collaboration activity function: An interaction analysis tool for computer supported collaborative learning activities. In 4th IEEE International Conference on Advanced Learning Technologies (ICALT 2004) (pp. 196–200).Google Scholar
  16. Ford, L., & Fulkerson, D. (1962). Flows in networks. Princeton University Press.Google Scholar
  17. Freeman, J. B. (1991). Dialectics and the macrostructure of arguments: A theory of argument structure. Walter de Gruyter.Google Scholar
  18. Garey, M. R., & Johnson, D. S. (1990). Computers and intractability; a guide to the theory of NP-completeness. New York, NY, USA: Freeman. ISBN: 0716710455.Google Scholar
  19. Garner, W. R. (1974). The processing of information and structure (Vol. 20(2), p. 465). Lawrence Erlbaum.Google Scholar
  20. Gelder, T. V. (2003). Enhancing deliberation through computer supported argument mapping. In Visualizing Argumentation (pp. 97–115). London: Springer-Verlag.Google Scholar
  21. Gordon, T. F., Prakken, H., & Walton, D. (2007). The carneades model of argument and burden of proof. Artificial Intelligence, 171(10–15), 875–896.MathSciNetMATHCrossRefGoogle Scholar
  22. Harkins, S. G., & Jackson, J. M. (1985). The role of evaluation in eliminating social loafing. Personality and Social Psychology Bulletin, 11(4), 457–465.CrossRefGoogle Scholar
  23. Hopcroft, J. E., & Karp, R. M. (1973). An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2, 225.MathSciNetMATHCrossRefGoogle Scholar
  24. Johnson, C. M. (2001). A survey of current research on online communities of practice. The Internet and Higher Education, 4(1), 45–60.CrossRefGoogle Scholar
  25. Jonas, E., Schulz-Hardt, S., Frey, D., & Thelen, N. (2001). Confirmation bias in sequential information search after preliminary decisions: An expansion of dissonance theoretical research on selective exposure to information. Journal of Personality and Social Psychology, 80(4), 557–571.CrossRefGoogle Scholar
  26. Karacapilidis, N., Tzagarakis, M., Karousos, N., Gkotsis, G., Kallistros, V., Christodoulou, S., et al. (2009). Tackling cognitively-complex collaboration with CoPe_it!. International Journal of Web-Based Learning and Teaching Technologies, 4(3), 22–38.CrossRefGoogle Scholar
  27. Kuhn, D. (1991). The skills of argument. Cambridge University Press.Google Scholar
  28. Kunz, W., & Rittel, H. (1979). Issues as elements of information systems. Working Paper No. 131.Google Scholar
  29. Latane, B., Williams, K., & Harkins, S. (1979). Many hands make light the work: The causes and consequences of social loafing. Journal of Personality and Social Psychology, 37(6), 822–832.CrossRefGoogle Scholar
  30. Mclaren, B. M., Scheuer, O., & Miksátko, J. (2010). Supporting collaborative learning and e-discussions using artificial intelligence techniques. International Journal of Artificial Intelligence in Education, 20(1), 1–46.Google Scholar
  31. Paolucci, M., Suthers, D., & Weiner, A. (1996). Automated advice-giving strategies for scientific inquiry. In Intelligent tutoring systems (pp. 372–381).Google Scholar
  32. Rahwan, I., Madakkatel, M. I., Bonnefon, J. F., Awan, R. N., & Abdallah, S. (2010). Behavioral experiments for assessing the abstract argumentation semantics of reinstatement. Cognitive Science, 34(8), 1483–1502. ISSN: 1551-6709.CrossRefGoogle Scholar
  33. Read, R. C., & Corneil, D. G. (1977). The graph isomorphism disease. Journal of Graph Theory, 1(1), 339–363.MathSciNetMATHCrossRefGoogle Scholar
  34. Reed, C., & Rowe, G. (2004). Araucaria: Software for argument analysis, diagramming and representation. International Journal of AI Tools, 14(3–4), 961–980.CrossRefGoogle Scholar
  35. Rees, M. A. (1995). Analysing and evaluating problem-solving discussions. Argumentation, 9(2), 343–362.CrossRefGoogle Scholar
  36. Scheuer, O., Loll, F., Pinkwart, N., & McLaren, B. M. (2010). Computer-supported argumentation: A review of the state of the art. International Journal of Computer-Supported Collaborative Learning, 5(1), 43–102.CrossRefGoogle Scholar
  37. Selvin, A., Buckingham Shum, S. J., Sierhuis, M., Conklin, J., Zimmermann, B., Palus, C., et al. (2001). Compendium: Making meetings into knowledge events. Knowledge Technologies, 2001, 4–7.Google Scholar
  38. Shapiro, L. G., & Haralick, R. M. (1981). Structural descriptions and inexact matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(5), 504–519.CrossRefGoogle Scholar
  39. Shapiro, B. A., & Zhang, K. (1990). Comparing multiple RNA secondary structures using tree comparisons. Bioinformatics, 6(4), 309.CrossRefGoogle Scholar
  40. Siddiqi, K., Shokoufandeh, A., Dickinson, S. J., & Zucker, S. W. (1999). Shock graphs and shape matching. International Journal of Computer Vision, 35(1), 13–32.CrossRefGoogle Scholar
  41. Suthers, D., Weiner, A., Connelly, J., & Paolucci, M. (1995). Belvedere: Engaging students in critical discussion of science and public policy issues. In AI-Ed 95, the 7th world conference on artificial intelligence in education (pp. 266–273).Google Scholar
  42. Van Benthem, J. (2008). Logic and reasoning: Do the facts matter?. Studia Logica, 88(1), 67–84. ISSN: 0039-3215.MathSciNetMATHCrossRefGoogle Scholar
  43. Van Eemeren, F. H., Grootendorst, R., Jackson, S., & Jacobs, S. (1993). Reconstructing argumentative discourse (studies in rhetoric and communication). University of Alabama Press. ISBN: 0817306978.Google Scholar
  44. Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71–95.CrossRefGoogle Scholar
  45. Wooldridge, M. (2009). An introduction to multiagent systems. Wiley. ISBN: 0470519460.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Industrial Management and Information Systems Lab, MEADUniversity of PatrasRio PatrasGreece

Personalised recommendations