Journal of Intelligent Information Systems

, Volume 39, Issue 2, pp 399–440 | Cite as

Tractable reasoning with vague knowledge using fuzzy \(\mathcal{EL}^{++}\)

  • Theofilos Mailis
  • Giorgos Stoilos
  • Nikolaos Simou
  • Giorgos Stamou
  • Stefanos Kollias
Article

Abstract

Fuzzy Description Logics (fuzzy DLs) are extensions of classic DLs that are capable of representing and reasoning with imprecise and vague knowledge. Though reasoning algorithms for very expressive fuzzy DLs have been developed and optimizations have started to be explored, the efficiency of such systems is still questionable, and the study of tractable languages is an interesting open issue. In this paper we introduce a tractable fuzzy extension of \(\mathcal{EL}^{++}\). We present its syntax and semantics together with a reasoning algorithm for the fuzzy concept subsumption problem to which other problems can be reduced.

Keywords

Fuzzy description logics Fuzzy \({\mathcal{EL}^{++}}\) Tractable description logics Fuzzy concrete domains 

References

  1. Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the el envelope. In L. P. Kaelbling & A. Saffiotti (Eds.), IJCAI (pp. 364–369). Professional Book Center.Google Scholar
  2. Baader, F., Brandt, S., & Lutz, C. (2008). Pushing the el envelope further. In K. Clark & P. F. Patel-Schneider (Eds.), Proceedings of the OWLED 2008 DC workshop on OWL: Experiences and directions.Google Scholar
  3. Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.) (2003). The description logic handbook: Theory, implementation, and applications. Cambridge University Press.Google Scholar
  4. Baader, F., & Peñaloza, R. (2011). Gcis make reasoning in fuzzy dl with the product t-norm undecidable. In Proceedings of the 24th international workshop on description logics (DL 2011).Google Scholar
  5. Berners-Lee, T., & Hendler, J. (2001). Scientific publishing on the semantic web. Nature, 410, 1023–1024.CrossRefGoogle Scholar
  6. Bobillo, F., Delgado, M., & Gómez-Romero, J. (2007). Optimizing the crisp representation of the fuzzy description logic sroiq. In F. Bobillo, P. C. G. da Costa, C. d’Amato, N. Fanizzi, F. Fung, T. Lukasiewicz, et al. (Eds.), URSW. CEUR workshop proceedings (Vol. 327). CEUR-WS.org.
  7. Bobillo, F., & Straccia, U. (2009a). Extending datatype restrictions in fuzzy description logics. In ISDA (pp. 785–790).Google Scholar
  8. Bobillo, F., & Straccia, U. (2009b). Fuzzy description logics with general t-norms and datatypes. Fuzzy Sets and Systems, 160(23), 3382–3402.MathSciNetMATHCrossRefGoogle Scholar
  9. Bobillo, O., Delgado, M., & Gómez-Romero, J. (2006). A crisp representation for fuzzy shoin with fuzzy nominals and general concept inclusions. In Proc. of the 2nd international workshop on uncertainty reasoning for the semantic web (URSW 06).Google Scholar
  10. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007). Tractable reasoning and efficient query answering in description logics: The dl-lite family. Journal of Automated Reasoning, 39(3), 385–429.MathSciNetMATHCrossRefGoogle Scholar
  11. Dasiopoulou, S., Kompatsiaris, I., & Strintzis, M. G. (2008). Using fuzzy DLs to enhance semantic image analysis. In Proc. 3rd international conference on semantic and digital media technology (SAMT). Koblenz, Germany.Google Scholar
  12. Falelakis, M., Maramis, C., Lekka, I., Mitkas, P., & Delopoulos, A. (2009). An ontology for supporting clinical research on cervical cancer. In International conference on knowledge engineering and ontology development. Madeira, Portugal.Google Scholar
  13. Feng, S., Ouyang, D., Zhang, Y., Che, H., & Liu, J. (2010). The logical difference for fuzzy el+ ontologies. In 23rd international workshop on description logics DL2010 (p. 351). Citeseer.Google Scholar
  14. Ferrara, A., Lorusso, D., Stamou, G., Stoilos, G., Tzouvaras, V., & Venetis, T. (2008). Resolution of conflicts among ontology mappings: A fuzzy approach. In International workshop on ontology matching (OM2008). Karlsruhe.Google Scholar
  15. Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6), 345.CrossRefGoogle Scholar
  16. Haarslev, V., Pai, H.-I., & Shiri, N. (2007). Optimizing tableau reasoning in alc extended with uncertainty. In D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, & A.-Y. Turhan (Eds.), Proceedings of the 2007 international workshop on description logics (DL2007), Brixen–Bressanone, near Bozen–Bolzano, Italy, 8–10 June 2007. CEUR workshop proceedings (Vol. 250). CEUR-WS.org.
  17. Hahnle, R. (2001). Advanced many-valued logics. Handbook of philosophical logic (Vol. 2, 2nd ed.). Dordrecht, Holland: Kluwer.Google Scholar
  18. Hanss, M. (2005). Applied fuzzy arithmetic—an introduction with engineering applications. Berlin: Springer.MATHGoogle Scholar
  19. Horrocks, I., & Sattler, U. (1999). A description logic with transitive and inverse roles and role hierarchies. Journal of Logic and Computation, 9(3), 385.MathSciNetMATHCrossRefGoogle Scholar
  20. Kazakov, Y. (2009). Consequence-driven reasoning for horn SHIQ ontologies. In B. C. Grau, I. Horrocks, B. Motik, & U. Sattler (Eds.), Proceedings of the 22nd international workshop on description logics (DL 2009). CEUR workshop proceedings (Vol. 477). United Kindgom: Oxford.Google Scholar
  21. Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. New Jersey: Prentice Hall PTR.MATHGoogle Scholar
  22. Lutz, C. (2003). Description logics with concrete domains—a survey. In Advances in modal logics (Vol. 4). King’s College Publications.Google Scholar
  23. McGuinness, D. L. (2003). Configuration. In The description logic handbook (p. 405). Cambridge, UK: Cambridge University Press.Google Scholar
  24. Meghini, C., Sebastiani, F., & Straccia, U. (2001). A model of multimedia information retrieval. Journal of the ACM (JACM), 48(5), 909–970.MathSciNetCrossRefGoogle Scholar
  25. Mitkas, P., Koutkias, V., Symeonidis, A., Falelakis, M., Diou, C., Lekka, I., et al. (2008). Association studies on cervical cancer facilitated by inference and semantic technologies: The ASSIST approach. Studies in Health Technology and Informatics, 136, 241–246.Google Scholar
  26. Pan, J. Z., Stamou, G. B., Stoilos, G., & Thomas, E. (2007). Expressive querying over fuzzy dl-lite ontologies. In D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, & A.-Y. Turhan (Eds.), Proceedings of the 2007 international workshop on description logics (DL2007), Brixen–Bressanone, near Bozen–Bolzano, Italy, 8–10 June 2007. CEUR workshop proceedings (Vol. 250). CEUR-WS.org.
  27. Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., & Donini, F. M. (2009). Fuzzy matchmaking in e-marketplaces of peer entities using datalog. Fuzzy Sets and Systems, 160(2), 251–268.MathSciNetCrossRefGoogle Scholar
  28. Simou, N., Athanasiadis, Th., Stoilos, G., & Kollias, S. (2008). Image indexing and retrieval using expressive fuzzy description logics. Signal, Image and Video Processing, 2(4), 321–335.CrossRefGoogle Scholar
  29. Simou, N., Mailis, T., Stoilos, G., & Stamou, G. (2010). Optimization techniques for fuzzy description logics. In 23rd international workshop on description logics DL2010 (p. 244). Waterloo, Canada.Google Scholar
  30. Stoilos, G., Stamou, G., Pan, J. Z., Tzouvaras, V., & Horrocks, I. (2007). Horrocks I.: Reasoning with very expressive fuzzy description logics. Journal of Artificial Intelligence Research, 30, 273–320.MathSciNetMATHGoogle Scholar
  31. Stoilos, G., Stamou, G. B., & Pan, J. Z. (2008). Classifying fuzzy subsumption in fuzzy-el+. In F. Baader, C. Lutz, & B. Motik (Eds.), Description logics. CEUR workshop proceedings (Vol. 353). CEUR-WS.org.
  32. Straccia, U. (2001). Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research (JAIR), 14, 137–166.MathSciNetMATHGoogle Scholar
  33. Straccia, U. (2005a). Description logics with fuzzy concrete domains. In Proceedings of the 21st annual conference on uncertainty in artificial intelligence (UAI-05) (pp. 559–567).Google Scholar
  34. Straccia, U. (2005b). Towards a fuzzy description logic for the semantic web (preliminary report). In A. Gómez-Pérez & J. Euzenat (Eds.), ESWC. Lecture notes in computer science (Vol. 3532, pp. 167–181). Springer.Google Scholar
  35. Straccia, U. (2006). Towards top-k query answering in description logics: The case of dl-lite. In M. Fisher, W. van der Hoek, B. Konev, & A. Lisitsa (Eds.), JELIA. Lecture notes in computer science (Vol. 4160, pp. 439–451). Springer.Google Scholar
  36. Straccia, U., & Bobillo, F. (2007). Mixed integer programming, general concept inclusions and fuzzy description logics. In Proceedings of the 5th conference of the European society for fuzzy logic and technology (EUSFLAT-07) (Vol. 2, pp. 213–220). Ostrava, Czech Republic.Google Scholar
  37. Vaneková, V., & Vojtáš, P. (2010). Comparison of scoring and order approach in description logic el(d). In J. van Leeuwen, A. Muscholl, D. Peleg, J. Pokorný, & B. Rumpe (Eds.), SOFSEM 2010: Theory and practice of computer science. Lecture notes in computer science (Vol. 5901, pp. 709–720). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  38. Vojtáš, P. (2007). EL description logic with aggregation of user preference concepts. Frontiers in artificial intelligence and applications ISSN 0922–6389 (chapter EL description logic with aggregation of user preference concepts, Vol. 154, 1st ed., pp. 154–166). IOS Press Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Theofilos Mailis
    • 1
  • Giorgos Stoilos
    • 2
  • Nikolaos Simou
    • 1
  • Giorgos Stamou
    • 1
  • Stefanos Kollias
    • 3
  1. 1.Image, Video and Multimedia Systems LaboratoryNational Technical University of AthensAthensGreece
  2. 2.Oxford University Computing LaboratoryOxfordUK
  3. 3.School of Electrical and Computer Engineering, Division of Computer ScienceNational Technical University of AthensAthensGreece

Personalised recommendations