Advertisement

Journal of Intelligent Information Systems

, Volume 40, Issue 2, pp 211–239 | Cite as

Meme ranking to maximize posts virality in microblogging platforms

  • Francesco Bonchi
  • Carlos Castillo
  • Dino Ienco
Article

Abstract

Microblogging is a modern communication paradigm in which users post bits of information, or “memes” as we call them, that are brief text updates or micromedia such as photos, video or audio clips. Once a user post a meme, it become visible to the user community. When a user finds a meme of another user interesting, she can eventually repost it, thus allowing memes to propagate virally trough the social network. In this paper we introduce the meme ranking problem, as the problem of selecting which k memes (among the ones posted by their contacts) to show to users when they log into the system. The objective is to maximize the overall activity of the network, that is, the total number of reposts that occur. We deeply characterize the problem showing that not only exact solutions are unfeasible, but also approximated solutions are prohibitive to be adopted in an on-line setting. Therefore we devise a set of heuristics and we compare them trough an extensive simulation based on the real-world Yahoo! Meme social graph, using parameters learnt from real logs of meme propagations. Our experimentation demonstrates the effectiveness and feasibility of these methods.

Keywords

Social network analysis Information propagation Feed ranking 

Notes

Acknowledgements

The authors wish to acknowledge the Yahoo! Meme team for their help, Ulf Brefeld and Aris Gionis for their suggestions. This research is partially supported by the Spanish Centre for the Development of Industrial Technology under the CENIT program, project CEN-20101037, “Social Media” (www.cenitsocialmedia.es).

References

  1. Adar, E., & Adamic, L. A. (2005). Tracking information epidemics in blogspace. In Web Intelligence.Google Scholar
  2. Agarwal, N., Liu, H., Tang, L., & Yu, P. S. (2008). Identifying the influential bloggers in a community. In Proceedings of the first international conference on Web search and Web data mining, (WSDM’08).Google Scholar
  3. Backstrom, L., Huttenlocher, D. P., Kleinberg, J. M., & Lan, X. (2006). Group formation in large social networks: Membership, growth, and evolution. In Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’06).Google Scholar
  4. Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Addison Wesley.Google Scholar
  5. Bakshy, E., Karrer, B., & Adamic, L. A. (2009). Social influence and the diffusion of user-created content. In EC ’09: Proceedings of the tenth ACM conference on electronic commerce, pp. 325–334, New York, NY, USA, ACM.Google Scholar
  6. Cha, M., Haddadi, H., Benevenuto, F., & Gummadi, K. P. (2010). Measuring user influence in Twitter: The million follower fallacy. In In Proceedings of the 4th international AAAI conference on weblogs and social media (ICWSM).Google Scholar
  7. Cha, M., Mislove, A., & Gummadi, P. K. (2009). A measurement-driven analysis of information propagation in the Flickr social network. In Proceedings of the 18th international conference on World Wide Web (WWW’09).Google Scholar
  8. Chen, W., Wang, C., & Wang, Y. (2010a). Scalable influence maximization for prevalent viral marketing in large-scale social networks. In Proc. of the 16th ACM SIGKDD int. conf. on knowledge discovery and data mining (KDD’10).Google Scholar
  9. Chen, W., Wang, Y., & Yang, S. (2009). Efficient influence maximization in social networks. In Proc. of the 15th ACM SIGKDD int. conf. on knowledge discovery and data mining (KDD’09).Google Scholar
  10. Chen, W., Yuan, Y., & Zhang, L. (2010b). Scalable influence maximization in social networks under the linear threshold model. In Proceedings of the 10th IEEE international conference on data mining (ICDM’2010).Google Scholar
  11. Crandall, D. J., Cosley, D., Huttenlocher, D. P., Kleinberg, J. M., & Suri, S. (2008). Feedback effects between similarity and social influence in online communities. In Proc. of the 14th ACM SIGKDD int. conf. on knowledge discovery and data mining (KDD’08).Google Scholar
  12. Domingos, P., & Richardson, M. (2001). Mining the network value of customers. In Proc. of the seventh ACM SIGKDD int. conf. on knowledge discovery and data mining (KDD’01).Google Scholar
  13. Friedkin, N. E. (1998). A structural theory of social influence. Cambridge University Press.Google Scholar
  14. Golbeck, J., & Hendler, J. (2006). Inferring binary trust relationships in web-based social networks. ACM Transactions on Internet Technology, 6(4), 497–529.CrossRefGoogle Scholar
  15. Goyal, A., Bonchi, F., & Lakshmanan, L. (2010). Learning influence probabilities in social networks. In Proceedings of the third ACM international conference on Web search and data mining (WSDM 2010).Google Scholar
  16. Gruhl, D., Guha, R. V., Liben-Nowell, D., & Tomkins, A. (2004). Information diffusion through blogspace. In Proceedings of the 13th international conference on World Wide Web, (WWW’04).Google Scholar
  17. Guha, R., Kumar, R., Raghavan, P., & Tomkins, A. (2004). Propagation of trust and distrust. In Proceedings of the 13th international conference on World Wide Web (WWW’04).Google Scholar
  18. Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301), 13–30.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Java, A., Song, X., Finin, T., & Tseng, B. (2007). Why we Twitter: Understanding microblogging usage and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis.Google Scholar
  20. Jianshu Weng, J. J., Lim, Ee-P., & He, Q. (2010). Twitterrank: Finding topic-sensitive influential twitterers. In WSDM, p. 10.Google Scholar
  21. Kempe, D., Kleinberg, J. M., & Tardos, É. (2003). Maximizing the spread of influence through a social network. In Proc. of the ninth ACM SIGKDD int. conf. on knowledge discovery and data mining (KDD’03).Google Scholar
  22. Lerman, K., & Jones, L. (2006). Social browsing on flickr. CoRR, abs/cs/0612047.Google Scholar
  23. Leskovec, J., Backstrom, L., & Kleinberg, J. (2009). Meme-tracking and the dynamics of the news cycle. In Proc. of the 15th ACM SIGKDD int. conf. on knowledge discovery and data mining (KDD’09).Google Scholar
  24. Leskovec, J., Kleinberg, J., & Faloutsos, C. (2005). Graphs over time: Densification laws, shrinking diameters and possible explanations. New York, NY.Google Scholar
  25. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., & Glance, N. S. (2007). Cost-effective outbreak detection in networks. In Proc. of the 13th ACM SIGKDD int. conf. on knowledge discovery and data mining (KDD’07).Google Scholar
  26. Leskovec, J., Singh, A., & Kleinberg, J. M. (2006). Patterns of influence in a recommendation network. In Proceedings of the 10th Pacific-Asia conference on knowledge discovery and data mining, (PAKDD’06).Google Scholar
  27. Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. (2007). Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM conference on internet measurement (IMC’07).Google Scholar
  28. Mitzenmacher, M., & Upfal, E. (2005). Probability and computing: Randomized algorithms and probabilistic analysis. Cambridge University Press.Google Scholar
  29. Richardson, M., & Domingos, P. (2002). Mining knowledge-sharing sites for viral marketing. In Proc. of the eighth ACM SIGKDD int. conf. on knowledge discovery and data mining (KDD’02).Google Scholar
  30. Samper, J. J., Castillo, P. A., Araujo, L., & Guervós, J. J. M. (2006). Nectarss, an rss feed ranking system that implicitly learns user preferences. CoRR, abs/cs/0610019.Google Scholar
  31. Song, X., Chi, Y., Hino, K., & Tseng, B. L. (2007). Information flow modeling based on diffusion rate for prediction and ranking. In Proceedings of the 16th international conference on World Wide Web (WWW’07).Google Scholar
  32. Song, X., Tseng, B. L., Lin, C.-Y., & Sun, M.-T. (2006). Personalized recommendation driven by information flow. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (SIGIR’06).Google Scholar
  33. Taherian, M., Amini, M., & Jalili, R. (2008). Trust inference in web-based social networks using resistive networks. In Proceedings of the 2008 third international conference on internet and web applications and services (ICIW’08).Google Scholar
  34. Tang, J., Sun, J., Wang, C., & Yang, Z. (2009). Social influence analysis in large-scale networks. In Proc. of the 15th ACM SIGKDD int. conf. on knowledge discovery and data mining (KDD’09).Google Scholar
  35. Valiant, L. G. (1979). The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3), 410–421.MathSciNetzbMATHCrossRefGoogle Scholar
  36. Wu, F., Huberman, B. A., Adamic, L. A., & Tyler, J. R. (2004). Information flow in social groups. Physica A: Statistical and Theoretical Physics, 337(1–2), 327–335.MathSciNetCrossRefGoogle Scholar
  37. Zaki, M. J. (2005). Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE Transactions on Knowledge and Data Engineering, 17(8), 1021–1035 (special issue on Mining Biological Data).CrossRefGoogle Scholar
  38. Ziegler, C.-N., & Lausen, G. (2005). Propagation models for trust and distrust in social networks. Information Systems Frontiers, 7(4–5), 337–358.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Yahoo! ResearchBarcelonaSpain
  2. 2.Cemagref, UMR TETISMontpellierFrance

Personalised recommendations