Advertisement

Journal of Intelligent Information Systems

, Volume 37, Issue 2, pp 119–137 | Cite as

Optimizing queries to remote resources

  • Albert WeichselbraunEmail author
Article
  • 111 Downloads

Abstract

One key property of the Semantic Web is its support for interoperability. Recent research in this area focuses on the integration of multiple data sources to facilitate tasks such as ontology learning, user query expansion and context recognition. The growing popularity of such machups and the rising number of Web APIs supporting links between heterogeneous data providers asks for intelligent methods to spare remote resources and minimize delays imposed by queries to external data sources. This paper suggests a cost and utility model for optimizing such queries by leveraging optimal stopping theory from business economics: applications are modeled as decision makers that look for optimal answer sets. Queries to remote resources cause additional cost but retrieve valuable information which improves the estimation of the answer set’s utility. Optimal stopping optimizes the trade-off between query cost and answer utility yielding optimal query strategies for remote resources. These strategies are compared to conventional approaches in an extensive evaluation based on real world response times taken from seven popular Web services.

Keywords

Information integration Adaptive decision-making Optimal stopping Opportunity cost model Semantic Web Heterogeneous data sources 

Notes

Acknowledgements

The project results have been developed in the RAVEN (Relation Analysis and Visualization) project funded by the Austrian Ministry of Transport, Innovation and Technology and the Austrian Research Promotion Agency. The author would like to thank Wolfgang Janko for his valuable suggestions during the preparation of this article.

References

  1. Bizer, C. (2009). The emerging web of linked data. IEEE Intelligent Systems, 24(5), 87–92. doi: 10.1109/MIS.2009.102.CrossRefGoogle Scholar
  2. Das, R., Whalley, I., & Kephart, J. O. (2006). Utility-based collaboration among autonomous agents for resource allocation in data centers. In AAMAS ’06: Proceedings of the fifth international joint conference on autonomous agents and multiagent systems (pp. 1572–1579). New York: ACM. doi: 10.1145/1160633.1160935.CrossRefGoogle Scholar
  3. Ferguson, T. S. (2009). Optimal stopping and applications. Mathematics Department, University of California. URL:http://www.math.ucla.edu/~tom/Stopping/Contents.html. Online publication, last visited 2 June 2010.
  4. Freeman, P. R. (1983). The secretary problem and its extensions: A review. International Statistical Review, 51(2), 189–206.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Grass, J., & Zilberstein, S. (2000). A value-driven system for autonomous information gathering. Journal of Intelligent Information Systems, 14(1), 5–27. doi: 10.1023/A:1008718418982.CrossRefGoogle Scholar
  6. Gupta, C., Bhowmik, R., Head, M. R., Govindaraju, M., & Meng, W. (2007). Improving performance of web services query matchmaking with automated knowledge acquisition. In Web Intelligence (pp. 559–563). IEEE Computer Society.Google Scholar
  7. Hartmann, J. (1985). Wirtschaftliche alternativensuche mit informationsbeschaffung unter unsicherheit. PhD thesis, Universität Fridericiana Karlsruhe.Google Scholar
  8. Horvitz, E. J., Breese, J. S., & Henrion, M. (1988). Decision theory in expert systems and artificial intelligence. International Journal of Approximate Reasoning, 2, 247–302. doi: 10.1016/0888-613X(88)90120-X.CrossRefGoogle Scholar
  9. Hubmann-Haidvogel, A., Scharl, A., & Weichselbraun, A. (2009). Multiple coordinated views for searching and navigating web content repositories. Information Sciences, 179(12), 1813–1821. doi: 10.1016/j.ins.2009.01.030.CrossRefGoogle Scholar
  10. Ipeirotis, P. G., Agichtein, E., Jain, P., & Gravano, L. (2007). Towards a query optimizer for text-centric tasks. ACM Transactions on Database Systems, 32(4):21. doi: 10.1145/1292609.1292611.CrossRefGoogle Scholar
  11. Johnson, E. J., & Payne, J. W. (1985). Effort and accuracy in choice. Management Science, 31(4), 395–414. doi: 10.1287/mnsc.31.4.395.CrossRefGoogle Scholar
  12. Kephart, J. O., & Das, R. (2007). Achieving self-management via utility functions. IEEE Internet Computing, 11(1), 40–48. doi: 10.1109/MIC.2007.2.CrossRefGoogle Scholar
  13. Kukulenz, D., & Ntoulas, A. (2007). Answering bounded continuous search queries in the world wide web. In WWW ’07: Proceedings of the 16th international conference on World Wide Web (pp. 551–560). New York: ACM. doi: 10.1145/1242572.1242647.CrossRefGoogle Scholar
  14. Lim, C., Bearden, J. N., & Smith, J. C. (2006). Sequential search with multiattribute options. Decision Analysis, 3(1), 3–15. doi: 10.1287/deca.1050.0044.CrossRefGoogle Scholar
  15. Liu, W., Weichselbraun, A., Scharl, A., & Chang, E. (2005). Semi-automatic ontology extension using spreading activation. Journal of Universal Knowledge Management, 0(1), 50–58. http://www.jukm.org/jukm_0_1/semi_automatic_ontology_extension.Google Scholar
  16. MacQueen, J. (1964). Optimal policies for a class of search and evaluation problems. Management Science, 10(4), 746–759.CrossRefGoogle Scholar
  17. Marcozzi, M. D. (2008). On the approximation of infinite dimensional optimal stopping problems with application to mathematical finance. Journal of Scientific Computing, 34(3), 287–307. doi: 10.1007/s10915-007-9168-2.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Montgomery, A. L., Hosanagar, K., Krishnan, R., & Clay, K. B. (2004). Designing a better shopbot. Management Science, 50(2) 189–206. doi: 10.1287/mnsc.1030.0151.CrossRefGoogle Scholar
  19. Scharl, A., Weichselbraun, A., & Liu, W. (2007). Tracking and modelling information diffusion across interactive online media. International Journal of Metadata, Semantics and Ontologies, 2(2), 136–145. doi: 10.1504/IJMSO.2007.016807.CrossRefGoogle Scholar
  20. Shugan, S. M. (1980). The cost of thinking. The Journal of Consumer Research, 7(2), 99–111.MathSciNetCrossRefGoogle Scholar
  21. Siorpaes, K., & Hepp, M. (2008). Games with a purpose for the semantic web. IEEE Intelligent Systems & Their Applications, 23, 50–60. doi: 10.1109/MIS.2008.45.CrossRefGoogle Scholar
  22. Strunk, J. D., Thereska, E., Faloutsos, C., & Ganger, G. R. (2008). Using utility to provision storage systems. In FAST’08: Proceedings of the 6th USENIX conference on file and storage technologies (pp. 1–16). Berkeley: USENIX Association.Google Scholar
  23. Tesauro, G., Jong, N. K., Das, R., & Bennani, M. N. (2007). On the use of hybrid reinforcement learning for autonomic resource allocation. Cluster Computing, 10(3), 287–299. doi: 10.1007/s10586-007-0035-6.CrossRefGoogle Scholar
  24. Vengerov, D. (2007). A reinforcement learning approach to dynamic resource allocation. Engineering Applications of Artificial Intelligence, 20(3), 383–390. doi: 10.1016/j.engappai.2006.06.019.CrossRefGoogle Scholar
  25. Verma, A., Jain, R., & Ghosal, S. (2008). A utility-based unified disk scheduling framework for shared mixed-media services. ACM Transactions on Storage, 3(4), 1–30. doi: 10.1145/1326542.1326546.CrossRefGoogle Scholar
  26. Wang, Y. J., Sanderson, R., Coenen, F., & Leng, P. (2008). Document-base extraction for single-label text classification. In Proceedings of the 10th international conference on data warehousing and knowledge discovery (DaWaK-2008) (pp. 357–367). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-85836-2_34.Google Scholar
  27. Weichselbraun, A. (2009). Applying optimal stopping for optimizing queries to external semantic web resources. In J. Cordeiro, B. Shishkov, A. Ranchordas, & M. Helfert (Eds.), Software and data technologies, communications in computer and information science (Vol. 47, pp. 105–118). Berlin-Heidelberg: Springer doi: 10.1007/978-3-642-05201-9.Google Scholar
  28. Yeo, C. S., & Buyya, R. (2007). Pricing for utility-driven resource management and allocation in clusters. International Journal of High Performance Computing Applications, 21(4), 405–418. doi: 10.1177/1094342007083776.CrossRefGoogle Scholar
  29. Zhang, M., Martin, P., Powley, W., & Bird, P. (2008). Using economic models to allocate resources in database management systems. In CASCON ’08: Proceedings of the 2008 conference of the center for advanced studies on collaborative research (pp. 248–259). New York: ACM. doi: 10.1145/1463788.1463814.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Vienna University of Economics and BusinessViennaAustria

Personalised recommendations