Advertisement

Journal of Intelligent Information Systems

, Volume 36, Issue 1, pp 117–130 | Cite as

Using web sources for improving video categorization

  • José M. Perea-Ortega
  • Arturo Montejo-Ráez
  • M. Teresa Martín-Valdivia
  • L. Alfonso Ureña-López
Article

Abstract

In this paper, several experiments about video categorization using a supervised learning approach are presented. To this end, the VideoCLEF 2008 evaluation forum has been chosen as experimental framework. After an analysis of the VideoCLEF corpus, it was found that video transcriptions are not the best source of information in order to identify the thematic of video streams. Therefore, two web-based corpora have been generated in the aim of adding more informational sources by integrating documents from Wikipedia articles and Google searches. A number of supervised categorization experiments using the test data of VideoCLEF have been accomplished. Several machine learning algorithms have been proved to validate the effect of the corpus on the final results: Naïve Bayes, K-nearest-neighbors (KNN), Support Vectors Machine (SVM) and the j48 decision tree. The results obtained show that web can be a useful source of information for generating classification models for video data.

Keywords

Video categorization Supervised learning Automatic Speech Recognition transcriptions 

Notes

Acknowledgements

This paper has been partially supported by a grant from the Spanish Government, project TEXT-COOL 2.0 (TIN2009-13391-C04-02), project GEOASIS (P08-TIC-41999) granted by the Andalusian Government and project RFC/PP2008/UJA-08-16-14. We would like to thank the Cross-Language Evaluation Forum in general and Carol Peters in particular.

References

  1. Arni, T., Clough, P., Sanderson, M., & Grubinger, M. (2009). Overview of the ImageCLEFphoto 2008 photographic retrieval task. In CLEF. Lecture notes in computer science (Vol. 5706, pp. 500–511). Springer.Google Scholar
  2. Bargeron, D., Gupta, A., Grudin, J., & Sanocki, E. (1999). Annotations for streaming video on the web: System design and usage studies. In Proceedings of the eighth international world-wide web conference.Google Scholar
  3. Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A. (1990). Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6), 391–407.CrossRefGoogle Scholar
  4. Díaz-Galiano, M. C., García-Cumbreras, M. A., Martín-Valdivia, M. T., Montejo-Ráez, A., & Ureña López, L. A. (2005). The University of Jaén at Imageclef 2005: Adhoc and medical tasks. In C. Peters, F. C. Gey, J. Gonzalo, H. Müller, G. J. F. Jones, M. Kluck, et al. (Eds.), CLEF. Lecture notes in computer science (Vol. 4022, pp. 612–621). Springer.Google Scholar
  5. Díaz-Galiano, M. C., García-Cumbreras, M. A., Martín-Valdivia, M. T., Montejo-Ráez, A., & Ureña López, L. A. (2006). Using information gain to improve the Imageclef 2006 collection. In C. Peters, P. Clough, F. C. Gey, J. Karlgren, B. Magnini, D. W. Oard, et al. (Eds.), CLEF. Lecture notes in computer science (Vol. 4730, pp. 711–714). Springer.Google Scholar
  6. Díaz-Galiano, M. C., García-Cumbreras, M. A., Martín-Valdivia, M. T., Montejo-Ráez, A., & Ureña López, L. A. (2007). Integrating mesh ontology to improve medical information retrieval. In C. Peters, V. Jijkoun, T. Mandl, H. Müller, D. W. Oard, A. Peñas, et al. (Eds.), CLEF. Lecture notes in computer science (Vol. 5152, pp. 601–606). Springer.Google Scholar
  7. Díaz-Galiano, M. C., García-Cumbreras, M. A., Martín-Valdivia, M. T., Montejo-Ráez, A., & Ureña López, L. A. (2008). SINAI at ImageCLEFmed 2008. In Proceedings of the cross language evaluation forum (CLEF 2008).Google Scholar
  8. Díaz-Galiano, M. C., Perea-Ortega, J. M., Martín-Valdivia, M. T., Montejo-Ráez, A., & Ureña López, L. A. (2007). SINAI at TRECVID 2007. In Proceedings of the TRECVID 2007 workshop (TRECVID 2007).Google Scholar
  9. Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10, 1895–1923.CrossRefGoogle Scholar
  10. Henning, M., Kalpathy-Cramer, J., Kahn, C. E., Hatt, W., Bedrick, S., & Hersh, W. R. (2009). Overview of the ImageCLEFmed 2008 medical image retrieval task. In CLEF. Lecture notes in computer science (Vol. 5706, pp. 512–522). Springer.Google Scholar
  11. Lam, S. L. Y., & Lee, D. L. (1999). Feature reduction for neural network based text categorization. In DASFAA ’99: Proceedings of the sixth international conference on database systems for advanced applications (pp. 195–202). Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar
  12. Larson, M., Newman, E., & Jones, G. (2009). Overview of VideoCLEF 2008: Automatic generation of topic-based feeds for dual language audio-visual content. In Evaluating systems for multilingual and multimodal information access. Lecture notes in computer science (Vol. 5706, pp. 906–917). Springer.Google Scholar
  13. Lewis, D. D. (1991). Evaluating text categorization. In Proceedings of speech and natural language workshop (pp. 312–318). Morgan Kaufmann.Google Scholar
  14. Li, J., Chang, S. F., Lesk, M., Lienhart, R., Luo, J., & Smeulders, A. W. M. (2007) New challenges in multimedia research for the increasingly connected and fast growing digital society. In J. Z. Wang, N. Boujemaa, A. D. Bimbo, & J. Li (Eds.), Multimedia information retrieval (pp. 3–10). ACM.Google Scholar
  15. Martín-Valdivia, M. T., Díaz-Galiano, M. C., Montejo-Ráez, A., & Ureña López, L. A. (2008). Using information gain to improve multi-modal information retrieval systems. Information Processing and Management, 44(3), 1146–1158.Google Scholar
  16. Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.zbMATHGoogle Scholar
  17. Montejo-Ráez, A., & Ureña López, L. A. (2006). Binary classifiers versus adaboost for labeling of digital documents. Sociedad Española para el Procesamiento del Lenguaje Natural, 37, 319–326.Google Scholar
  18. Perea-Ortega, J. M,, Montejo-Ráez, A., Martín-Valdivia, M. T., Díaz-Galiano, M. C., & Ureña-López, L. A. (2008). SINAI at VideoCLEF 2008. In Proceedings of the cross language evaluation forum (CLEF 2008).Google Scholar
  19. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1–47.CrossRefGoogle Scholar
  20. Smeaton, A. F., Over, P., & Kraaij, W. (2006). Evaluation campaigns and TRECVid. In J. Z. Wang, N. Boujemaa, & Y. Chen (Eds.), Multimedia information retrieval (pp. 321–330). ACM.Google Scholar
  21. Volkmer, T., Smith, J. R., & Natsev, A. (2005). A web-based system for collaborative annotation of large image and video collections: An evaluation and user study. In ACM multimedia (pp. 892–901). ACM.Google Scholar
  22. Yamamoto, D., & Nagao, K. (2004). iVAS: Web-based video annotation system and its applications. In 3rd international semantic web conference (ISWC2004) (pp. 7–11).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • José M. Perea-Ortega
    • 1
  • Arturo Montejo-Ráez
    • 1
  • M. Teresa Martín-Valdivia
    • 1
  • L. Alfonso Ureña-López
    • 1
  1. 1.SINAI Research Group, Computer Science DepartmentUniversity of JaénJaénSpain

Personalised recommendations