Journal of Intelligent Information Systems

, Volume 31, Issue 2, pp 127–146 | Cite as

Approximate schemas, source-consistency and query answering

  • Michel de RougemontEmail author
  • Adrien Vieilleribière


We use the Edit distance with Moves on words and trees and say that two regular (tree) languages are ε-close if every word (tree) of one language is ε-close to the other. A transducer model is introduced to compare tree languages (schemas) with different alphabets and attributes. Using the statistical embedding of Fischer et al. (Proceedings of 21st IEEE Symposium on Logic in Computer Science, pp. 421–430, 2006), we show that Source-Consistency and Approximate Query Answering are testable on words and trees, i.e. can be approximately decided within ε by only looking at a constant fraction of the input.


Approximate schemas Source-consistency Query answering Distances Complexity 


  1. Alon, N., Krivelich, M., Newman, I., & Szegedy, M. (2000). Regular languages are testable with a constant number of queries. SIAM Journal on Computing, 30(6), 1842–1862.CrossRefGoogle Scholar
  2. Apostolico, A., & Galil, Z. (1997). Chapter 14: Approximate tree pattern matching. In Pattern matching algorithms. Oxford: Oxford University Press.Google Scholar
  3. Arenas, M., & Libkin, L. (2005). Xml data exchange: Consistency and query answering. In Proceedings of ACM symposium on principles of database systems (pp. 13–24).Google Scholar
  4. Boobna, U., & de Rougemont, M. (2004). Correctors for XML data. In International XML database symposium, XSym (pp. 97–111).Google Scholar
  5. Broder, A. (1997). On the resemblance and containment of documents. In Proceedings of compression and complexity of sequences (p. 21).Google Scholar
  6. Cormode, G., & Muthukrishnan, S. (2002). The string edit distance matching problem with moves. In Symposium on discrete algorithms (pp. 667–676).Google Scholar
  7. Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2003). Data exchange: Semantics and query answering. In International conference on database theory (pp. 207–224).Google Scholar
  8. Fischer, E., Magniez, F., & de Rougemont, M. (2006). Approximate satisfiability and equivalence. In Proceedings of 21st IEEE symposium on logic in computer science (pp. 421–430).Google Scholar
  9. Goldreich, O., Goldwasser, S., & Ron, D. (1998). Property testing and its connection to learning and approximation. Journal of the ACM, 45(4), 653–750.zbMATHCrossRefMathSciNetGoogle Scholar
  10. Magniez, F., & de Rougemont, M. (2004). Property testing of regular tree languages. In International conference on automata languages and programming (ICALP) (pp. 932–944).Google Scholar
  11. Martens, W., & Neven, F. (2004). Frontiers of tractability for typechecking simple xml transformations. In Principles of database systems (pp. 23–34).Google Scholar
  12. Masek, M., & Paterson, M. (1980). A faster algorithm for computing string edit distance. Journal of Computer and System Sciences, 20(1), 18–31.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Parikh, R. J. (1966). On context-free languages. Journal of the ACM (JACM), 13(4), 570–581.zbMATHCrossRefMathSciNetGoogle Scholar
  14. Rubinfeld, R., & Sudan, M. (1996). Robust characterizations of polynomials with applications to program testing. SIAM Journal on Computing, 25(2), 23–32.CrossRefMathSciNetGoogle Scholar
  15. Shapira, D., & Storer, J. (2002). Edit distance with move operations. In Proceedings of symposium on combinatorial pattern matching, Lecture Notes in Computer Science (Vol. 2373, pp. 85–98). Verlag.Google Scholar
  16. Tai, K. C. (1979). The tree-to-tree correction problem. Journal of the Association for Computing Machinery, 26, 422–433.zbMATHMathSciNetGoogle Scholar
  17. Thatcher, J. W. (1967). Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. Journal of Computer and System Sciences, 1, 317–322.zbMATHMathSciNetGoogle Scholar
  18. Wagner, R., & Fisher, M. (1974). The string-to-string correction problem. Journal of the Association for Computing Machinery, 21, 168–173.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.CNRS-LRIUniversity Paris-IIParisFrance
  2. 2.LRIUniversity Paris-SudParisFrance

Personalised recommendations