Journal of Intelligent Information Systems

, Volume 29, Issue 1, pp 79–96 | Cite as

A semantic framework and software design to enable the transparent integration, reorganization and discovery of natural systems knowledge

Article

Abstract

I present a conceptualization that attempts to unify diverse representations of natural knowledge while providing a workable computational framework, based on current semantic web theory, for developing, communicating, and running integrated simulation models. The approach is based on a long-standing principle of scientific investigation: the separation of the ontological character of the object of study from the semantics of the observation context, the latter including location in space and time and other observation-related aspects. I will show how current Knowledge Representation theories coupled with the object-oriented paradigm allow an efficient integration through the abstract model of a domain, which relates to the idea of aspect in software engineering. This conceptualization allows us to factor out two fundamental causes of complexity and awkwardness in the representation of knowledge about natural system: (a) the distinction between data and models, both seen here as generic knowledge sources; (b) the multiplicity of states in data sources, handled through the hierarchical composition of independently defined domain objects, each accounting for all states in one well-known observational dimension. This simplification leaves modelers free to work with the bare conceptual bones of the problem, encapsulating complexities connected to data format, and scale. I will then describe the design of a software system that implements the approach, referring to explicit ontologies to unambiguously characterize the semantics of the objects of study, and allowing the independent definition of a global observation context that can be redefined as required. I will briefly discuss applications to multi-scale, multi-paradigm modeling, intelligent database design, and web-based collaboration.

Keywords

Semantic web theory Intelligent database design Web-based collaboration Multi-paradigm modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrescu, A. (2001). Modern C++ design: Generic program and design patterns applied. New York, NY: Addison-Wesley.Google Scholar
  2. Allen, T. F. H., & Starr, T. B. (1982). Hierarchy: Perspectives for ecological complexity. Chicago, IL: University of Chicago Press.Google Scholar
  3. AMD (URL). The african mammals databank. Internet: http://gorilla.bio.uniroma1.it/amd.
  4. Argonne National Laboratories (URL). Review of the Dynamic Information Architecture System (DIAS). Internet: http://www.dis.anl.gov/DEEM/DIAS.
  5. Costanza, R., Duplisea, D., & Kautsky, U. (1998). Ecological modelling and economic systems with STELLA Introduction. Ecological Modelling, 110, 1–4.CrossRefGoogle Scholar
  6. CRAN (URL). The comprehensive R archive network. Internet: http://www.ci.tuwien.ac.at/R.
  7. DMSO (URL). DoD high level architecture. Internet: http://www.dmso.mil/projects/hla.
  8. Doan, A., J. Madhavan, J., Domingos, P., & Halevy, A. Y. (2002). Learning to map between ontologies on the semantic web. In Proceedings of the eleventh international conference on World Wide Web, May 07–11, Honolulu, Hawaii, USA.Google Scholar
  9. ESD (URL). The ecosystem services database. Internet: http://esd.uvm.edu.
  10. Fishwick, P. (1995). Simulation model design and execution: Building digital worlds. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  11. Fritzson, P., & Engelson, V. (1998). Modelica—A unified object-oriented language for system modelling and simulation. In Proceedings of European Conference on Object-Oriented Programming (ECOOP98), Brussels, July 20–24, 1998. Internet: http://citeseer.nj.nec.com/fritzson98modelica.html.
  12. GBIF (URL). Global biodiversity information facility. Internet: http://www.gbif.org.
  13. GEON (URL). GEON Cyberinfrastructure for the geosciences. Internet: http://www.geongrid.org.
  14. Grundy, J. C. (2000). Multi-perspective specification, design and implementation of software components using aspects. International Journal of Software Engineering and Knowledge Engineering, 20(6).Google Scholar
  15. Gupta, A., Ludaescher, B., & Martone, M. E. (2000). Knowledge-based integration of neuroscience data sources. In 12th Intl. Conference on Scientific and Statistical Database Management (SSDBM), pp. 39–52. Berlin, Germany: IEEE Computer Society.Google Scholar
  16. HPS (1995). STELLA User’s manual. High performance systems.Google Scholar
  17. IMA (URL). Integrating modelling architecture home page. Internet: http://www.integratedmodelling.org.
  18. ISO (URL). ISO/TC211 Geographic information metadata standard. Internet: http://www.isotc211.org.
  19. Ives, Z. G., Halevy, A. Y., Mork, P., & Tatarinov, I. (2004.) Piazza: Mediation and integration infrastructure for Semantic Web data. Web Semantics: Science, Services and Agents on the World Wide Web, 2, 155–175.Google Scholar
  20. Ludaescher, B., Altintas, I., & Gupta, A. (2002). Time to leave the trees: From syntactic to conceptual querying of XML. In Intl. Workshop on XML data management, in junction with Conference on Extending Database Technology (EDBT). Prague, March 2002.Google Scholar
  21. Ludaescher, B., Gupta, A., & Martone, M. E. (2001). Model-based mediation with domain maps. Proceedings 17th Intl. Conference on Data Engineering (ICDE), Heidelberg, Germany.Google Scholar
  22. Madhavan, J., Bernstein, P. A., Domingos, P., & Halevy, A. Y. (2002). Representing and reasoning about mappings between domain models. Proceedings of the Eighteenth National Conference on Artificial Intelligence (pp. 80–86). Edmonton, Alberta, Canada.Google Scholar
  23. Michener, W. K., Beach, J. H., Jones, M. B., Ludaescher, B., Pennington, D. D., et al. (2004). A knowledge environment for the biodiversity and ecological sciences. Journal of Intelligent Information Systems, in this issue.Google Scholar
  24. Minar, N., Burkhart, R., Langton, C., & Askenazi, M. (1996). The swarm simulation system: A toolkit for building multi-agent simulations. Santa Fe Institute Working Paper 96-06-042.Google Scholar
  25. Mosterman, P., & Vangheluwe, H. L. (2000). Computer automated multi paradigm modeling in control system design. In A. Varga (Ed.), IEEE International Symposium on Computer-Aided Control System Design, 65–70. Anchorage, Alaska; IEEE Computer Society Press.Google Scholar
  26. OWL (URL). OWL Web Ontology Language Guide W3C Recommendation 10 February 2004. Internet: http://www.w3.org/TR/owl-guide.
  27. PBI: Partnership for Biological Informatics (URL). Ecological metadata language (EML). Internet: http://www.ecoinformatics.org/software/eml.
  28. PostgreSQL (URL). PostgreSQL home page. Internet: http://www.postgresql.org.
  29. Ptolemy (URL). The Ptolemy project. Internet: http://ptolemy.eecs.berkeley.edu.
  30. RDF (URL). Resource Description Framework (RDF). Internet: http://www.w3.org/RDF.
  31. RDQL (URL). RDQL—A Query Language for RDF W3C Member Submission 9 January 2004. Internet: http://www.w3.org/Submission/RDQL/.
  32. SciDI: SEMANTIC MEDIATION IDENTIFIED AS APPROACH TO SCI DATA INTEGRATION (2002). Scientific Data Integration Panel, Intl. Conf. On Extending Database Technology (EDBT), Prague, March 2002.Google Scholar
  33. SEEK (URL). Science Environment for Ecological Knowledge (SEEK). Internet: http://seek.ecoinformatics.org.
  34. SIMILE (URL). Simulistics home page. Internet: http://www.simulistics.com.
  35. Simulink (URL). Mathworks home page. Internet: http://www.mathworks.com.
  36. Stevenson, R. D., Haber, W. A., & Morris, R. A. (2003). Electronic field guides and user communities in the eco-informatics revolution. Conservation Ecology, 7(1), 3. Internet: http://www.consecol.org/vol7/iss1/art3.
  37. Stockinger, H., Rana, O., Moore, R., & Merzky, A. (2001). Data management for grid. Environments, High Performance Computing and Networking (HPCN 2001), Amsterdam, NL, June 2001.Google Scholar
  38. TDWG (URL). International working group on taxonomic databases. Internet: http://www.tdwg.org.
  39. Vangheluwe, H. L., Kerckhoffs, E. J. H., & Vansteenkiste, G. C. (2001). Computer automated modelling of complex systems. In E. J. H. Kerckhoffs, & M. Snorek (Eds.), 15th European Simulation Multi-conference (ESM), 7–18. Prague, Czech Republic; Society for Computer Simulation International (SCS).Google Scholar
  40. Villa, F. (1992). New computer architectures as tools for ecological thought. Trends in Ecology and Evolution, 7, 179–183.CrossRefGoogle Scholar
  41. Villa, F. (2001). Integrating modelling architecture: A declarative framework for multi-scale, multi-paradigm ecological modelling. Ecological Modelling, 137, 23–42.CrossRefGoogle Scholar
  42. Villa, F., & Costanza, R. (2000). Design of multi-paradigm integrating modelling tools for ecological research. Environmental Modelling and Software, 15, 169–177.CrossRefGoogle Scholar
  43. Villa, F., Wilson, M. A., DeGroot, R., Farber, S., Costanza, R., & Boumans, R. M. J. (2002). Design of an integrated knowledge base to support ecosystem services valuation. Ecological Economics, 41, 445–456.CrossRefGoogle Scholar
  44. XQUERY (URL). XQuery 1.0: An XML query language. W3C Working Draft 12 November 2003. http://www.w3.org/TR/xquery.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Ecoinformatics Collaboratory, Gund Institute for Ecological Economics and Department of BotanyUniversity of VermontBurlingtonUSA

Personalised recommendations