Journal of Intelligent Information Systems

, Volume 30, Issue 2, pp 93–114 | Cite as

Null values in fuzzy databases

  • Guy de TréEmail author
  • Rita de Caluwe
  • Henri Prade


Since in the real world, it often occurs that information is missing, database systems clearly need some facilities to deal with missing data. With respect to traditional database systems, the most commonly adopted approach to this problem is based on null values and three valued logic. This paper deals with the semantics and the use of null values in fuzzy databases. In dealing with missing information a distinction is made between incompleteness due to unavailability and incompleteness due to inapplicability. Both the database modelling and database querying aspects are described. With respect to attribute values, incompleteness due to unavailability is modelled by possibility distributions, which is a commonly used technique in the fuzzy databases. Domain specific null values, represented by a bottom symbol, are used to model incompleteness due to inapplicability. Extended possibilistic truth values are used to formalize the impact of data manipulation and (flexible) querying operations in the presence of these null values. The different cases of appearances of null values in the handling of selection conditions of flexible database queries are described in detail.


Null value Incomplete information Unknown information Inapplicable information Extended possibilistic truth values Fuzzy database modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of databases. Reading, MA: Addison-Wesley.zbMATHGoogle Scholar
  2. ANSI/X3/SPARC Study Group on Data Base Management Systems (1975). Interim Report. FDT (ACM Sigmod Records), 7(2), 1–140.Google Scholar
  3. Arrazola, I., Plainfossé, A., Prade, H., & Testemale, C. (1989). Extrapolation of fuzzy values from incomplete data bases. Information Systems, 14(6), 487–492.CrossRefGoogle Scholar
  4. Biskup, J. (1981). A formal approach to null values in database relations. In H. Gallaire, J. Minker, & J. Nicolas (Eds.), Advances in Data Base Theory (pp. 299–341). New York, NY: Plenum.Google Scholar
  5. Bochvar, D. (1938). Ob odnom trehznachnom iscislenii i ego primenenii k analizu paradoksov klassiceskogo funkcional’nogo iscislenija. Matematiceskij Sbornik, 4, 287–308. English translation: On a three-valued calculus and its applications to the analysis of the paradoxes of the classical extended functional calculus. History and Philosophy of Logic, 2, 87–112, 1981.zbMATHGoogle Scholar
  6. Bordogna, G. & Pasi, G. (Eds.) (2000). Recent Issues on Fuzzy Databases. Heidelberg, Germany: Physica-Verlag.zbMATHGoogle Scholar
  7. Bosc, P., & Pivert, O. (1992). Some approaches for relational databases flexible querying. International Journal on Intelligent Information Systems, 1, 323–354.CrossRefGoogle Scholar
  8. Bosc, P. & Kacprzyk, J. (Eds.) (1995). Fuzziness in Database Management Systems. Heidelberg, Germany: Physica-Verlag.zbMATHGoogle Scholar
  9. Bosc, P., & Pivert, O. (1995). SQLf: A relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems, 3, 1–17.CrossRefGoogle Scholar
  10. Bosc, P., & Pivert, O. (2005). About selection–projection–join queries addressed to possibilistic relational databases. IEEE Transactions on Fuzzy Systems, 13, 124–139.CrossRefGoogle Scholar
  11. Bosc, P., Kraft, D., & Petry, F. (2005). Fuzzy sets in database and information systems: status and opportunities. Fuzzy Sets and Systems, 153(3), 418–426.CrossRefMathSciNetGoogle Scholar
  12. Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the ACM, 13(6), 377–387. (Republished in Communications of the ACM, 26(1), 1983.)zbMATHCrossRefGoogle Scholar
  13. Codd, E. F. (1975). Understanding relations. FDT (ACM Sigmod Records), 7(3–4), 23–28.Google Scholar
  14. Codd, E. F. (1979). RM/T: Extending the relational model to capture more meaning. ACM Transactions on Database Systems, 4(4), 397–434.CrossRefGoogle Scholar
  15. Codd, E. F. (1986). Missing information (applicable and inapplicable) in relational databases. ACM SIGMOD Record, 15(4), 53–78.CrossRefGoogle Scholar
  16. Codd, E. F. (1987). More commentary on missing information in relational databases (applicable and inapplicable information). ACM SIGMOD Record, 16(1), 42–50.CrossRefGoogle Scholar
  17. Dardzinska, A. & Ras, Z. W. (2003). Chasing unknown values in incomplete information systems. In Proc. of ICDM’03 Workshop on Foundations and New Directions of Data Mining (pp. 24–30). Melbourne, FL, USA.Google Scholar
  18. Date, C. J. (1986). Null values in database management. In Relational Database: Selected Writings. (pp. 313–334). Reading, MA, USA: Addison-Wesley.Google Scholar
  19. Date, C. J. (1990a). NOT is not ‘Not’! (notes on three-valued logic and related matters). In Relational Database Writings 1985–1989 (pp. 217–248). Reading, MA, USA: Addison-Wesley.Google Scholar
  20. Date, C. J. (1990b). EXISTS is not ‘Exists’! (some logical flaws in SQL). In Relational Database Writings 1985–1989 (pp. 339–356). Reading, MA, USA: Addison-Wesley.Google Scholar
  21. Date, C. J. (1998). Faults and defaults. In C. J. Date, H. Darwen, & D. McGoveran (Eds.), Relational Database Writings 1994–1997. Reading, MA, USA: Addison-Wesley.Google Scholar
  22. de Caluwe, R. (Ed.) (1997). Fuzzy and Uncertain Object-oriented Databases: Concepts and Models. Singapore: World Scientific.zbMATHGoogle Scholar
  23. de Cooman, G. (1995). Towards a possibilistic logic. In D. Ruan (Ed.), Fuzzy Set Theory and Advanced Mathematical Applications (pp. 89–133). Boston, MA: Kluwer.Google Scholar
  24. de Cooman, G. (1999). From possibilistic information to Kleene’s strong multi-valued logics. In D. Dubois, E. P. Klement, & H. Prade (Eds.), Fuzzy Sets, Logics and Reasoning About Knowledge (pp. 315–323). Boston, MA: Kluwer.Google Scholar
  25. de Tré, G. (2002). Extended possibilistic truth values. International Journal of Intelligent Systems, 17, 427–446.zbMATHCrossRefGoogle Scholar
  26. de Tré, G., de Caluwe, R., Verstraete, J., & Hallez, A. (2002). Conjunctive aggregation of extended possibilistic truth values and flexible database querying. Lecture Notes in Artificial Intelligence, 2522, 344–355.Google Scholar
  27. de Tré, G., & de Caluwe, R. (2003). Modelling uncertainty in multimedia database systems: An extended possibilistic approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(1), 5–22.zbMATHCrossRefMathSciNetGoogle Scholar
  28. de Tré, G., & de Baets, B. (2003). Aggregating constraint satisfaction degrees expressed by possibilistic truth values. IEEE Transactions on Fuzzy Systems, 11(3), 361–368.CrossRefGoogle Scholar
  29. Dubois, D. & Prade, H. (1988). Possibility Theory. New York, NY: Plenum.zbMATHGoogle Scholar
  30. Dubois, D., & Prade, H. (2001). Possibility theory, probability theory and multiple-valued logics: A clarification. Annals of Mathematics and Artificial Intelligence, 32(1–4), 35–66.CrossRefMathSciNetGoogle Scholar
  31. Dyreson, C. E. (1997). A bibliography on uncertainty management in information systems. In A. Motro & P. Smets (Eds.), Uncertainty Management in Information Systems: From Needs to Solutions. (pp. 415–458). Boston, MA: Kluwer.Google Scholar
  32. Galindo, J., Medina, J. M., Pons, O., & Cubero, J. C. (1998). A server for fuzzy SQL queries. In T. Andreasen, H. Christiansen, & H. L. Larsen (Eds.), Flexible Querying and Answering Systems. (pp. 164–174). Dodrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
  33. International organization for Standardization (ISO) (1992). Database language SQL. Document ISO/IEC 9075.Google Scholar
  34. International Organization for Standardization (ISO) (1996). Information technology–database languages–SQL–technical corrigendum 2. Document ISO/IEC 9075:1992/Cor. 2.Google Scholar
  35. Imieli\({\text{ $ \grave{n} $ }}\)ski, T. & Lipski, W. (1984). Incomplete information in relational databases. Journal of the ACM, 31(4), 761–791.Google Scholar
  36. Keller, A. M., & Winslett, M. (1984). Approaches for updating databases with incomplete information and nulls. In Proc. of the 1st International Conference on Data Engineering (pp. 332–340). Los Angeles, CA, USA.Google Scholar
  37. Keller, A. M. (1986). Set-theoretic problems of null completion in relational databases. Information Processing Letters, 22(5), 261–265.zbMATHCrossRefMathSciNetGoogle Scholar
  38. Little, R. J. A. & Rubin, D. B. (2002). Statistical Analysis with Missing Data. New York, NY: Wiley.zbMATHGoogle Scholar
  39. Ma, Z. (Ed.) (2005). Advances in Fuzzy Object-oriented Databases: Modeling and Applications. Hershey, USA: About Idea Group.Google Scholar
  40. MacColl, H. (1906). Symbolic Logic and its Applications. London, UK: Longmans, Green.Google Scholar
  41. Mathiowetz, N. A. (1998). Respondent expression of uncertainty: data source for imputation. Public Opinion Quarterly, 62, 47–56.CrossRefGoogle Scholar
  42. Motro, A. (1995). Management of uncertainty in database systems. In W. Kim (Ed.), Modern database systems: The Object Model, Interoperability, and Beyond. (pp. 457–476). Reading, MA: Addison-Wesley.Google Scholar
  43. Pasi, G., & Yager, R. R. (1998). An approach to compute default attribute values in fuzzy object oriented data models. In Proc. of the FUZZ-IEEE, World Congress on Computational Intelligence (pp. 1326–1331). Anchorage, Alaska.Google Scholar
  44. Pasi, G., & Yager, R. R. (1999). Calculating attribute values using inheritance structures in fuzzy object-oriented data models. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 29(4), 556–565.CrossRefGoogle Scholar
  45. Petry, F. E. (1996). Fuzzy Databases: Principles and Applications. Boston, MA: Kluwer.zbMATHGoogle Scholar
  46. Prade, H. (1982). Possibility sets, fuzzy sets and their relation to Lukasiewicz logic. In Proc. of the 12th International Symposium on Multiple-valued Logic (pp. 223–227), Paris, France.Google Scholar
  47. Prade, H., & Testemale, C. (1984). Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries. Information Sciences, 34, 115–143.zbMATHCrossRefMathSciNetGoogle Scholar
  48. Rescher, N. (1969). Many-valued Logic. New York, NY: McGraw-Hill.zbMATHGoogle Scholar
  49. Riedel, H., & Scholl, M. H. (1997). A formalization of ODMG queries. In S. Spaccapietra & F. Maryanski (Eds.), Proc. of the 7th Working Conference on Database Semantics (DS-7) (pp. 63–90). Leysin, Switzerland.Google Scholar
  50. Sagiv, Y. (1981). Can we use the universal instance assumption without using nulls? Proc. of the SIGMOD Conference (pp. 108–120). Boston, MA.Google Scholar
  51. Ullman, J. D. (1980). Principles of Database Systems (1st ed). Rockville, Maryland: Computer Science Press.zbMATHGoogle Scholar
  52. Umano, M., & Fukami, S. (1994). Fuzzy relational algebra for possibility-distribution-fuzzy relational model of fuzzy data. Journal of Intelligent Information Systems, 3, 7–27.CrossRefGoogle Scholar
  53. Vassiliou, Y. (1979). Null values in data base management: A denotational semantics approach. Proc. of the SIGMOD conference (pp. 162–169). Boston, MA.Google Scholar
  54. Yazici, A. & George. R. (1999). Fuzzy Database Modeling. Heidelberg, Germany: Physica-Verlag.zbMATHGoogle Scholar
  55. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.zbMATHCrossRefMathSciNetGoogle Scholar
  56. Zadeh, L. A. (1975). The concept of linguistic variable and its application to approximate reasoning parts I, II and III. Information Sciences, 8, 199–251, 8, 301–357, 9, 43–80.CrossRefMathSciNetGoogle Scholar
  57. Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.zbMATHCrossRefMathSciNetGoogle Scholar
  58. Zadeh, L. A. (2005). Toward a generalized theory of uncertainty (GTU)—an outline. Information Sciences, 172, 1–40.zbMATHCrossRefMathSciNetGoogle Scholar
  59. Zadrozny, S., & Kacprzyk, J. (1996). FQUERY for access: towards human consistent querying user interface. In Proc. of the 1996 ACM Symposium on Applied computing (SAC) (pp. 532–536). Philadelphia, USA.Google Scholar
  60. Zaniolo, C. (1984). Database relations with null values. Journal of Computer and System Sciences, 28(1), 142–166.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Computer Science Laboratory, Dept. of Telecommunications and Information ProcessingGhent UniversityGentBelgium
  2. 2.Institut de Recherche en Informatique de Toulouse (IRIT)-CNRSUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations