Journal of Intelligent Information Systems

, Volume 28, Issue 3, pp 253–283 | Cite as

Recommenders in a personalized, collaborative digital library environment

  • Henri Avancini
  • Leonardo Candela
  • Umberto Straccia


We envisage an information source not only as an information resource where users may submit queries to satisfy their daily information need, but also as a collaborative working and meeting space of people sharing common interests. Indeed, we will present a highly personalized environment where not only users may organize (and search into) the information space according to their individual taste and use, but which provides advanced features of collaborative work among the users. It is up to the system to discover interesting properties about the users’ interests, relationships between users and user communities and to make recommendations based on preference patterns of the users, which is the main topic of this paper.


Digital library Recommenders Collaborative work 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avancini, H., & Straccia, U. (2004a). Personalization, collaboration, and recommendation in the digital library environment CYCLADES. In Proceedings of the IADIS International Conference Applied Computing (AC-04) (pp. 589–596). Lisbon, Portugal: IADIS.Google Scholar
  2. Avancini, H., & Straccia, U. (2004b). User awareness in CYCLADES: a collaborative and personalized environment for open digital archives. In Proceedings of the IADIS International Conference on Web Based Communities (WBC-04) (pp. 67–74). Lisbon, Portugal: IADIS.Google Scholar
  3. Bentley, R., Appelt, W., Busbach, U., Hinrichs, E., Kerr, D., & Sikkel, K., et al. (1997). Basic support for cooperative work on the World Wide Web. International Journal of Human Computer Studies, 46, 827–846.CrossRefGoogle Scholar
  4. Billsus, D., & Pazzani, M. J. (1998). Learning collaborative information filters. In Proceedings of the 15th International Conference on Machine Learning (pp. 46–54). San Francisco, California: Morgan Kaufmann.Google Scholar
  5. Bollacker, K., Lawrence, S., & Giles, C. L. (1999). A system for automatic personalized tracking of scientific literature on the web. In Digital Libraries 99 - The Fourth ACM Conference on Digital Libraries (pp. 105–113). New York: ACM.CrossRefGoogle Scholar
  6. Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence (UAI-98) (pp. 43–52). Madison, Wisconsin, USA.Google Scholar
  7. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks ISDN Systems, 30(1–7), 107–117.CrossRefGoogle Scholar
  8. Callan, J. (2000). Distributed information retrieval. In W. Croft (Ed.), Advances in Information Retrieval (pp. 127–150). Hingham, MA, USA: Kluwer Academic.Google Scholar
  9. Callan, J., & Connell, M. (2001). Query-based sampling of text databases. ACM Transactions on Information Systems, 19(2), 97–130.CrossRefGoogle Scholar
  10. Callan, J., Lu, Z., & Croft, B. W. (1995). Searching distributed collections with inference networks. In Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR-95) (pp. 21–28). New York: ACM.CrossRefGoogle Scholar
  11. Candela, L., & Straccia, U. (2004). The personalized, collaborative digital library environment CYCLADES and its collections management. In J. Callan, F. Crestani, and M. Sanderson (Eds.), Multimedia Distributed Information Retrieval, Lecture Notes in Computer Science, 2924 (pp. 156–172). Berlin Heidelberg New York: Springer.Google Scholar
  12. Di Giacomo, M., Mahoney, D., Bollen, J., Monroy-Hernandez, A., & Meraz, C. M. R. (2001). MyLibrary, a personalization service for digital library environments. In Proceedings of the Second DELOS Network of Excellence Workshop on Personalisation and Recommender Systems in Digital Libraries. Ireland: Dublin City University.Google Scholar
  13. Faensen, D., Faulstich, L., Schweppe, H., Hinze, A., & Steidinger, A. (2001). Hermes: a notification service for digital libraries. In ACM/IEEE Joint Conference on Digital Libraries (pp. 373–380). New York: ACM.Google Scholar
  14. Fernandez, L., Sanchez, J. A., & Garcia, A. (2000). MiBiblio: personal spaces in a digital library universe. In ACM DL (pp. 232–233). New York: ACM.CrossRefGoogle Scholar
  15. Fox, E. A., & Marchionini, G. (2001). Digital libraries: Introduction. Communications of the ACM, 44(5), 30–32.CrossRefGoogle Scholar
  16. Fuhr, N. (1999). A decision-theoretic approach to database selection in networked IR. ACM Transactions on Information Systems, 3(17), 229–249.CrossRefGoogle Scholar
  17. Goldberg, D. J., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave information tapestry. Communications of the ACM, 35(12), 61–70.CrossRefGoogle Scholar
  18. Good, N., Schafer, J., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., et al. (1999). Combining collaborative filtering with personal agents for better recommendations. In Proceedings 1999 Conf. American Association of Artificial Intelligence (pp. 439–446). Menlo Park, California: American Association for Artificial Intelligence.Google Scholar
  19. Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. In Proceedings of the 22th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR-99)Berkeley, California, USA (pp. 230–237). New York: ACM.Google Scholar
  20. Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., & Riedl, J. (1997). Applying collaborative filtering to Usenet news. Communications of the ACM, 40(3), 77–87.CrossRefGoogle Scholar
  21. Meng, W., Liu, K., Yu, C., Wang, X., Chang, Y., & Rishe, N. (1998). Determining text databases to search in the internet. In Proceedings of the 24th International Conference on Very Large Data Bases (VLDB-98) (pp. 14–25). New York, USA.Google Scholar
  22. Moukas, A. (1996). Amalthaea: Information discovery and filtering using a multiagent evolving ecosystem. In Proceedings Practical Applications of Agents and Multiagent Technology (pp. 437–457). New York: Taylor and Francis.Google Scholar
  23. Rasolofo, Y., Abbaci, F., & Savoy, J. (2001). Approaches to collection selection and results merging for distributed information retrieval. In Proceedings of the 10th International Conference on Information and Knowledge Management (CIKM-01) (pp. 191–198). New York: ACM.CrossRefGoogle Scholar
  24. Renda, M. E., & Straccia, U. (2002). A personalized collaborative digital library environment. In 5th International Conference on Asian Digital Libraries (ICADL-02), Lecture Notes in Computer Science 2555, Singapore, Republic of Singapore (pp. 262–274). Berlin Heidelberg New York: Springer.Google Scholar
  25. Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., & Riedl, J. (1994). GroupLens: An open architecture for collaborative filtering of netnews. In Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work, Chapel Hill, North Carolina (pp. 175–186). New York: ACM.CrossRefGoogle Scholar
  26. Rocha, L. M. (1999). Talkmine and the adaptive recommendation project. In ACM DL (pp. 242–243). New York: ACM.Google Scholar
  27. Salton, G. & McGill, J. M. (1983). Introduction to modern information retrieval. Reading, Massachusetts: Addison Wesley.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Henri Avancini
    • 1
  • Leonardo Candela
    • 1
  • Umberto Straccia
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione – C.N.R. – Via G. Moruzzi, 1PisaItaly

Personalised recommendations