Skip to main content

Advertisement

Log in

Seasonal variation of ground and arboreal ants in forest fragments in the highly-threatened Cerrado-Amazon transition

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Abstract

An understanding of the spatiotemporal patterns of species distribution is a major goal in community ecology. This understanding is particularly challenging for highly seasonal and diverse habitats, such as transition zones between major biomes, like the Cerrado-Amazon transition (CAT). Within the CAT, there are many kinds of vegetation, including the ecotonal forests, marked by a high seasonality and floristic elements belonging to both surrounding biomes. Here, our primary goal is to examine the temporal variation of ant communities in ecotonal forest fragments of the CAT. More specifically, we assessed whether arboreal ants and ground-dwelling ants responded differently to seasonality. Thus, we sampled ants in the arboreal and ground strata, across the dry and wet season, in six ecotonal forest fragments in the CAT. We found that the seasonal variation was higher for ground-dwelling than arboreal ant communities, and only ground-dwelling ants differed in species richness between dry and wet seasons.

Implications for conservation

Our results show that ground-dwelling ant communities are more sensitive to seasonal variation than are arboreal ants. These ants often represent the bulk of ant diversity in tropical forests, and the current climate change scenario can be particularly harmful to them. Therefore, future conservation practices need to give special attention to ground-dwelling ants, especially in the CAT, facing increasing anthropogenic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal AA, Ackerly DD, Adler F, Arnold AE, Cáceres C, Doak DF, Post E, Hudson PJ, Maron J, Mooney KA, Poer M, Schemske D, Stachowicz J, Strauss S, Turner MG, Werner E (2007) Filling key gaps in population and community ecology. Front Ecol Environ 5:145–152. https://doi.org/10.1890/15409295(2007)5[145:FKGIPA]2.0.CO;2

    Article  Google Scholar 

  • Almeida RPS, Arruda FV, Silva DP, Coelho BWT (2019) Bees (Hymenoptera, Apoidea) in an ecotonal Cerrado-Amazon region in Brazil. Sociobiology 66(3):457–466. https://doi.org/10.13102/sociobiology.v66i3.3463

    Article  Google Scholar 

  • Andersen AN (1999) My bioindicator or yours? Making the selection. J Insect Conserv 3:1–4

    Article  Google Scholar 

  • Anu A, Sabu TK, Vineesh PJ (2009) Seasonality of litter insects and relationship with rainfall in a wet evergreen forest in south Western Ghats. J Insect Sci 9(1):46

    PubMed  PubMed Central  Google Scholar 

  • Auguie B (2017) gridExtra: miscellaneous functions for “grid” graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra. Acessed 24 Aug 2020

  • Baccaro FB, Ketelhut SM, De Morais JW (2010) Resource distribution and soil moisture content can regulate bait control in an ant assemblage in Central Amazonian forest. Austral Ecol 35(3):274–281

    Article  Google Scholar 

  • Baccaro FB, Feitosa RM, Fernandez F, Fernandes IO, Izzo TJ, Souza JLP, Solar R (2015) Guia para os gêneros de formigas do Brasil, 1st edn. Editora INPA, Manaus

    Google Scholar 

  • Basu P (1997) Seasonal and spatial patterns in ground foraging ants in a rain forest in the Western Ghats, India 1. Biotropica 29(4):489–500

    Article  Google Scholar 

  • Blüthgen N, Feldhaar H (2010) Food and shelter: how resources influence ant ecology. In: Lach L, Parr C, Abbott K (eds) Ant ecology. Oxford University Press, Oxford

    Google Scholar 

  • Blüthgen N, Verhaagh M, Goitía W, Jaff K, Morawetz W, Barthlott W (2000) How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125(2):229–240. https://doi.org/10.1007/s004420000449

    Article  PubMed  Google Scholar 

  • Brasil 2018 Instituto Nacional de Meteorologia. Ministério da Agricultura, Pecuária e Abastecimento, MAPA. http://www.inmet.gov.br/portal. Accessed 8 Nov 2018

  • Brown MJ, Parker GG (1994) Canopy light transmittance in a chronosequence of mixed-species deciduous forests. Can J Res 24(8):1694–1703

    Article  Google Scholar 

  • Brühl CA, Gunsalam G, Linsenmair KE (1998) Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah. Borneo J Trop Ecol 14(3):285–297. https://doi.org/10.1017/S0266467498000224

    Article  Google Scholar 

  • Bujan J, Kaspari M (2017) Nutrition modifies critical thermal maximum of a dominant canopy ant. J Insect Physiol 102:1–6. https://doi.org/10.1016/j.jinsphys.2017.08.007

    Article  CAS  PubMed  Google Scholar 

  • Bujan J, Yanoviak SP, Kaspari M (2016) Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community. Ecol Evol 6:6282–6291. https://doi.org/10.1002/ece3.2355

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne MM (1994) Ecology of twig-dwelling ants in a wet lowland tropical forest. Biotropica 26(1):61–72. https://doi.org/10.2307/2389111

    Article  Google Scholar 

  • Camarota F, Powell S, Melo AS, Priest G, Marquis RJ, Vasconcelos HL (2016) Co-occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements. Ecol Evol 6(24):8907–8918. https://doi.org/10.1002/ece3.2606

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlson DW, Groot A (1997) Microclimate of clear-cut, forest interior, and small openings in trembling aspen forest. Agric for Meteorol 87:313–329. https://doi.org/10.1016/S0168-1923(95)02305-4

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18(1):117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Crawley MJ (2007) The R Book. Wiley, Chichester

    Book  Google Scholar 

  • de Souza-Campana DR, Silva RR, Fernandes TT, de Morais Silva OG, Saad LP, de Castro Morini MS (2017) Twigs in the leaf litter as ant habitats in different vegetation habitats in Southeastern Brazil. Trop Conserv Sci 10:194008291771061. https://doi.org/10.1177/1940082917710617

    Article  Google Scholar 

  • Delsinne T, Arias-Penna T, Leponce M (2013) Effect of rainfall exclusion on ant assemblages in montane rainforests of Ecuador. Basic Appl Ecol 14(4):357–365

    Article  Google Scholar 

  • Fernandes TT, Silva RR, Souza DR, MorinI AN, MSC, (2012) Undecomposed twigs in the leaf litter as nest-building resources for ants (Hymenoptera: Formicidae) in areas of the Atlantic forest in the Southeastern region of Brazil. Psyche 12:896473. https://doi.org/10.1155/2012/896473

    Article  Google Scholar 

  • Fernandes TT, Dáttilo W, Silva RR, Luna P, Oliveira CM, Morini MSC (2019) Ant occupation of twigs in the leaf litter of the Atlantic forest: influence of the environment and external twig structure. Trop Conserv Sci 12:1–9. https://doi.org/10.1177/1940082919852943

    Article  CAS  Google Scholar 

  • Haidar RF, Fagg JMF, Pinto JRR, Dias RR, Damasco G, Silva LCR, Fagg CW (2013) Florestas estacionais e áreas de ecótono no estado do Tocantins, Brasil: Parâmetros estruturais, classificação das fitofisionomias florestais e subsídios para conservação. Acta Amaz 43(3):261–290. https://doi.org/10.1590/S0044-59672013000300003

    Article  Google Scholar 

  • Jacquemin J, Roisin Y, Leponce M (2016) Spatio-temporal variation in ant (Hymenoptera: Formicidae) communities in leaf-litter and soil layers in a premontane tropical forest. Myrmecol News 22:129–139

    Google Scholar 

  • Kaspari M, Weiser MD (2000) Ant activity along moisture gradients in a neotropical forest 1. Biotropica 32:703–711

    Article  Google Scholar 

  • Kaspari M, Clay NA, Lucas J, Revzen S, Kay A, Yanoviak SP (2016) Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants. Ecology 97:1038–1047. https://doi.org/10.1890/15-1225.1

    Article  PubMed  Google Scholar 

  • Klimes P, Idigel C, Rimandai M, Fayle TM, Janda M, Weiblen GD, Novotny V (2012) Why are there more arboreal ant species in primary than in secondary tropical forests? J Anim Ecol 81(5):1103–1112. https://doi.org/10.1111/j.1365-2656.2012.02002.x

    Article  PubMed  Google Scholar 

  • Law SJ, Bishop TR, Eggleton P, Griffiths H, Ashton L, Parr C (2020) Darker ants dominate the canopy: testing macroecological hypotheses for patterns in colour along a microclimatic gradient. J Anim Ecol 89(2):347–359. https://doi.org/10.1111/1365-2656.13110

    Article  PubMed  Google Scholar 

  • Leal IR, Filgueiras BK, Gomes JP, Iannuzzi L, Andersen AN (2012) Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodivers Conserv 21(7):1687–1701

    Article  Google Scholar 

  • Levings SC, Windsor DM (1996) Seasonal and annual variation in litter arthropod populations. In: Leigh EG, Rand AS, Windsor DM (eds) The ecology of a tropical forest. Smithsonian Institution, Washington, pp 355–387

    Google Scholar 

  • Majer JD (1983) Ants: bio-indicators of minesite rehabilitation, land-use, and land conservation. Environ Manage 7(4):375–383

    Article  Google Scholar 

  • Marimon BS, Lima ES, Duarte TG, Chieregatto LC, Ratter JA (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado-Amazonian forest ecotone. Edinb J Bot 63:323–341. https://doi.org/10.1017/S0960428606000576

    Article  Google Scholar 

  • Marimon BS, Marimon-Junior BH, Feldpausch TR, Oliveira-Santos C, Mews HA, Lopez-Gonzalez G et al (2014) Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in Southern Amazonia. Plant Ecol Divers 7(1–2):281–292

    Article  Google Scholar 

  • Marques TG, Espírito-Santo MM, Neves FS, Schoereder JH (2017) Ant assemblage structure in a secondary tropical dry forest: the role of ecological succession and seasonality. Sociobiology 64:261–275

    Article  Google Scholar 

  • Marques EQ, Marimon-Junior BH, Marimon BS, Matricardi EA, Mews HA, Colli GR (2020) Redefining the Cerrado-Amazonia transition: implications for conservation. Biodivers Conserv 29(5):1501–1517. https://doi.org/10.1007/s10531-019-01720-z

    Article  Google Scholar 

  • Morandi PS, Marimon-Junior BH, De Oliveira EA, Reis SM, Valadão MX, Forsthofer M et al (2016) Vegetation succession in the Cerrado-Amazonian forest transition zone of Mato Grosso state. Brazil Edinb J Bot 73(1):83–93

    Article  Google Scholar 

  • Neves FS, Antoniazzi R, Camarota F, Pacelhe FT, Powell S (2021) Spatiotemporal dynamics of the ant community in a dry forest differ by vertical strata but not by successional stage. Biotropica 53(2):372–383. https://doi.org/10.1111/btp.12918

  • Novais S, Calderón-Cortés N, Sánchez-Montoya G, Quesada M (2018) Arthropod facilitation by wood-boring beetles: spatio-temporal distribution mediated by a twig-girdler ecosystem engineer. J Insect Sci 18(5):14. https://doi.org/10.1093/jisesa/iey097

    Article  PubMed Central  Google Scholar 

  • Oksanen J et al (2020) Vegan: community ecology package. R package version-2. http://vegan.r-forge.r-project.org/. Accessed 15 July 2020

  • Passos FB, Marimon BS, Phillips OL, Morandi PS, Neves EC, Elias S, Reis SM, Oiveira B, Feldpausch TR, Marimon-Junior BH (2018) Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and “Cerrado” biomes. Braz J Bot 41:611–619

    Article  Google Scholar 

  • Philpott SM (2010) A canopy dominant ant affects twig-nesting ant assembly in coffee agroecosystems. Oikos 119(12):1954–1960. https://doi.org/10.1111/j.1600-0706.2010.18430.x

    Article  Google Scholar 

  • Powell S, Costa AN, Lopes CT, Vasconcelos HL (2011) Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants. J Anim Ecol 80:352–360. https://doi.org/10.1111/j.1365-2656.2010.01779.x

    Article  PubMed  Google Scholar 

  • Priest GV, Camarota F, Powell S, Vasconcelos HL, Marquis RJ (2021) Ecosystem engineering in the arboreal realm: heterogeneity of wood-boring beetle cavities and their use by cavity-nesting ants. Oecologia 196:427–439

    Article  Google Scholar 

  • R Core Development Team (2020) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Ratter JA (1993) Transition between cerrado and forest vegetation in Brazil. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-Savanna Boundaries. Chapman & hall, London, pp 417–429

    Google Scholar 

  • Rico-Gray V, Oliveira PS (2007) The ecology and evolution of ant–plant interactions. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Ritter E, Dalsgaard L, Einhorn KS (2005) Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. For Ecol Manage 206:15–33

    Article  Google Scholar 

  • Ryder Wilkie KT, Mertl AL, Traniello JF (2010) Species diversity and distribution patterns of the ants of Amazonian Ecuador. PLoS ONE 5(10):e13146

    Article  Google Scholar 

  • Satoh T, Yoshida T, Koyama S, Yamagami A, Takata M, Doi H, Kurachi T, Hayashi S, Hirobe T, Hata Y (2016) Resource partitioning based on body size contributes to the species diversity of wood-boring beetles and arboreal nesting ants. Insect Conserv Divers 9(1):4–12. https://doi.org/10.1111/icad.12136

    Article  Google Scholar 

  • Spicer ME, Stark AY, Adams BJ, Kneale R, Kaspari M, Yanoviak SP (2017) Thermal constraints on foraging of tropical canopy ants. Oecologia 183(4):1007–1017. https://doi.org/10.1007/s00442-017-3825-4

    Article  PubMed  Google Scholar 

  • Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC, Hails RS, Hays GC, Hodgson DJ, Hutchings MJ, Johnson D, Jones JPG, Keeling MJ, Kokko H, Kunin WE, Lambin X, Lewis OT, Malhi Y, Mieszkowska N, Milner-Gulland EJ, Norris K, Phillimore AB, Purves DW, Reid JM, Reuman DC, Thompson K, Travis JMJ, Turnbull LA, Wardle DA, Wiegand T (2013) Identification of 100 fundamental ecological questions. J Ecol 101(1):58–67. https://doi.org/10.1111/1365-2745.12025

    Article  Google Scholar 

  • Torello-Raventos M, Feldpausch TR, Veenendaal E, Schrodt F, Saiz G, Domingues TF et al (2013) On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecol Divers 6(1):101–137. https://doi.org/10.1080/17550874.2012.762812

    Article  Google Scholar 

  • Vasconcelos HL, Maravalhas JB, Feitosa RM, Pacheco R, Neves KC, Andersen AN (2018) Neotropical savanna ants show a reversed latitudinal gradient of species richness, with climatic drivers reflecting the forest origin of the fauna. J Biogeogr 45:248–258. https://doi.org/10.1111/jbi.13113

    Article  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  • Yanoviak SP, Kaspari M (2000) Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89(2):259–266. https://doi.org/10.1034/j.1600-0706.2000.890206.x

    Article  Google Scholar 

  • Zimmerman JK, Wright SJ, Calderón O, Pagan MA, Paton S (2007) Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. J Trop Ecol 23(2):231–251. https://doi.org/10.1017/S0266467406003890

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210x.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by Coordenação de Apoio de Pessoal do Ensino Superior (CAPES). RPSA and WPR would like to thank CAPES for the Ph.D. scholarships provided and FVA thanks PCI-MCTIC/MPEG (302198/2020-2). TJI was supported by CNPQ grants (309552/2018-4). The authors would also like to thank DBO Engenharia and Horizonte Minerals. The authors thank the valuable suggestions of Fabrício Teresa and two anonymous reviewers. The authors are particularly in debt with the following specialists for the confirmation of the ant species of different groups: Alexandre Ferreira (Pheidole), Emília Albuquerque (Cyphomyrmex and Mycetophylax), Jignasha Rana (Cephalotes), Lívia Prado (Camponotus, Megalomyrmex, Octostruma and Neoponera), Otávio Silva (Rogeria), Ricardo Vicente and Rodolfo Probst (Camponotus).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Data collection was performed by FVA and RPSA. Material preparation was carried out by RPSA. Data analysis was performed by WPR and RPSA. The first draft of the manuscript was written by FVA and FC. All authors commented on previous versions, read and approved the final manuscript.

Corresponding author

Correspondence to Flávio Camarota.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Due to the study system being invertebrates and no destructive sampling was used, ethical approval was not required. All the required permits were obtained for the field study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Arruda, F.V., Camarota, F., Ramalho, W.P. et al. Seasonal variation of ground and arboreal ants in forest fragments in the highly-threatened Cerrado-Amazon transition. J Insect Conserv 25, 897–904 (2021). https://doi.org/10.1007/s10841-021-00356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-021-00356-1

Keywords

Navigation