Journal of Insect Conservation

, Volume 23, Issue 5–6, pp 967–975 | Cite as

Factors that affect the occupancy, activity and distribution patterns of Grammostola vachoni, an endemic tarantula from the austral mountains of Argentina

  • Leonela SchwerdtEmail author
  • Ana Elena de Villalobos
  • Fernando Pérez-Miles


Activity and occupancy dynamics of spiders are topics that have received little attention and are compounded by anecdotal field data, especially in Theraphosidae that are generally nocturnal. Due to potential vulnerability outside their burrows, it is expected that individuals remain in the safety of their shelters most of the time and because their limited dispersal mechanism, usually by walking over short distances. Grammostola vachoni is an endemic tarantula from Argentina listed as Vulnerable specie by the IUCN. Changes in natural habitat of G. vachoni are detrimental for their survivorship. However, little is known about whether their occupancy dynamics and spatial distribution pattern are affected by different disturbances. In this study we evaluated whether disturbances in the natural habitat of G. vachoni affected the distribution patterns and adults abundance in different populations and determined activity patterns and refuge fidelity. It was observed that the spiders emerged after 9:30 pm and showed an exploratory behavior; females exhibited high refuge fidelity. Results showed that in disturbed habitats the spiders presented an aggregated distribution, whereas in undisturbed habitats spiders remained in settlements with greater distances between neighbors. Therefore, it can be concluded that the distribution patterns of G. vachoni are influenced by environmental disturbances to their natural habitat. These aspects are particularly important due to the conservation status of the spider, since the continual regression of mountain grassland in Argentina puts species viability at risk; especially in species with limited dispersal capability, a longer life cycle and sedentary habits such as G. vachoni.


Nocturnal spiders Refuge fidelity Sedentary species Mountain grassland Threatened species 



The authors thank Nelson Ferretti, Gabriel Pomppozi, Sofia Copperi and Pablo Rodriguez for assistance during field work. We are grateful to OPDS (Organismo Provincial para el Desarrollo Sostenible) for authorization to work in PPET and SGNR. L.S was supported by a CONICET fellowship (Consejo Nacional de Investigaciones Científicas y Técnicas). Thanks to the anonymous referees for comments that improved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Álvarez L, Perafán C, y Pérez-Miles Y (2016) At what time, for what distance, and for how long does the tarantula Eupalaestrus weijenberghi (Araneae, Theraphosidae) leave its burrow during the mating season? J Arachnol 17(3):152–154CrossRefGoogle Scholar
  2. Bell JR, Wheater CP, Cullen R (2001) The implications of grassland and heathland management for the conservation of spider communities: a review. J Zool 255:377–387CrossRefGoogle Scholar
  3. Bilenca D, Miñarro F (2004) Identificación de Áreas Valiosas Pastizal (avps) en las Pampas y campos de Argentina, Uruguay y sur de Brasil. Fundación Vida Silvestre Argentina, Buenos Aires, ArgentinaGoogle Scholar
  4. Bonte D, Clercq ND, Zwertvaegher I, Lens L (2009) Repeatability of dispersal behaviour in a common dwarf spider: evidence for different mechanisms behind short-and long-distance dispersal. Ecol Entomol 34(2):271–276CrossRefGoogle Scholar
  5. Bonte D, Hovestadt T, Poethke HJ (2010) Evolution of dispersal polymorphism and local adaptation of dispersal distance in spatially structured landscapes. Oikos 119:560–566CrossRefGoogle Scholar
  6. Bradley RA (1996) Foraging activity and burrow distribution in the Sydney brown trapdoor spider (Misgolas rapax Karsch: Idiopidae). J Arachnol 24:58–67Google Scholar
  7. Brown KS (1996) The use of insects in the study, inventory, conservation and monitoring of biological diversity in the Neotropics, in relation to land use models. In: Hirowatari SA, Ishii T, Brower M (eds) Decline and conservation of butterflies, Japan. Lepidopterol Soc, Osaka, pp 128–149Google Scholar
  8. Canning G, Reilly BK, Dippenaar-Shoeman AS (2014) Borrow structure and microhabitat characteristics of Nesiergus insulanus (Araneae: Theraphosidae) from Fregate Island, Seychelles. J Arachnol 42:293–298CrossRefGoogle Scholar
  9. Canning G, Reilly BK, Dippenaar-Schoeman AS (2015) Aspects of the ecology and behaviour of the Seychelles theraphosid Nesiergus insulanus (Arachnida: Araneae: Theraphosidae). Afr Invertebr 56(1):167–180CrossRefGoogle Scholar
  10. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35(4):445–453CrossRefGoogle Scholar
  11. Clobert J, Le Galliard JF, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12(3):197–209PubMedCrossRefGoogle Scholar
  12. Cloudsley-Thompson JL (1987) The biorhythms of spiders. In: Dalingwater JE, Nentwig W (eds) Ecophysiology of spiders. Springer, Berlin, pp 371–379CrossRefGoogle Scholar
  13. Cloudsley-Thompson JL, Constantinou C (1985) Diurnal rhythm of activity in the arboreal tarantula Avicularia avicularia (L.) (Mygalomorphae: Theraphosidae). Biol Rhythm Res 16(2):113–116Google Scholar
  14. Costa FG, Pérez-Miles F, Mignone A (2004) Pompilid wasp interactions with burrowing tarantulas: Pepsis cupripennis versus Eupalaestrus weijenberghi and Acanthoscurria suina (Araneae, Theraphosidae). Stud Neotrop Fauna E 39:37–43CrossRefGoogle Scholar
  15. Engelbrecht I (2013) Pitfall trapping for surveying trapdoor spiders: the importance of timing, conditions and effort. J Arachnol 41:133–142CrossRefGoogle Scholar
  16. Ferretti N, Ferrero A (2008) Courtship and mating behavior of Grammostola schulzei (Schmidt 1994) a burrowing tarantula from Argentina. J Arachnol 36:480–483CrossRefGoogle Scholar
  17. Ferretti N, Pérez-Miles F (2011) Intraspecific non-sexual interactions of Grammostola schulzei (Araneae, Theraphosidae) under laboratory conditions. Rev Biol Trop 59(3):1173–1182PubMedGoogle Scholar
  18. Ferretti N, Pompozzi G (2012) Grammostola vachoni. The IUCN Red List of Threatened Species. e.T18217620A18217711Google Scholar
  19. Ferretti N, Copperi S, Schwerdt L, Pompozzi G (2014) Another Migid in the wall: natural history of the endemic and rare spider Calathotarsus simoni (Mygalomorphae: Migidae) from a hill slope in central Argentina. J Nat Hist 48:1907–1921CrossRefGoogle Scholar
  20. Ferretti N, Pompozzi G, Copperi S, Wehitt A, Galíndez E, González A, Pérez-Miles F (2017) A comparative morphological study of the epiandrous apparatus in mygalomorph spiders (Araneae, Mygalomorphae). Micron 93:9–19PubMedCrossRefGoogle Scholar
  21. Frangi JL, Bottino OJ (1995) Comunidades vegetales de la Sierra de la Ventana, provincia de Buenos Aires, Argentina. Rev Fac Agron La Plata 71(1):93–133Google Scholar
  22. Hamilton DE, McIntyre NE, Densmore LD (2012) Using implanted passive integrated transponders to monitor long-term burrow fidelity in a theraphosid spider, Aphonopelma hollyi. Southwest Nat 57:144–147CrossRefGoogle Scholar
  23. Hammer O, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  24. Horne JK, Schneider DC (1995) Spatial variance in ecology. Oikos 74(1):18–26CrossRefGoogle Scholar
  25. Hortal J, Roura-Pascual N, Sanders NJ, Rahbek C (2010) Understanding (insect) species distributions across spatial scales. Ecography 33(1):51–53CrossRefGoogle Scholar
  26. Janowski-Bell ME (2001) Ecology of an American tarantula, Aphonopelma hentzi (Theraphosidae). Ph.D. dissertation, University of Missouri at Columbia, ColumbiaGoogle Scholar
  27. Jetz W, Steffen J, Linsenmair KE (2003) Effects of light and prey availability on nocturnal, lunar and seasonal activity of tropical nightjars. Oikos 103:627–639CrossRefGoogle Scholar
  28. Jorge C, Laborda Á, Días MA, Aisenberg A, Simó M (2015) Habitat preference and effects of coastal fragmentation in the sand-dwelling spider Allocosa brasiliensis (Lycosidae, Allocosinae). J Anim Sci 5(03):309Google Scholar
  29. Kim KC, Byrne LB (2006) Biodiversity loss and the taxonomic bottleneck: emerging biodiversity science. Ecol Res 21:794–810CrossRefGoogle Scholar
  30. Kiss B, Samu F (2000) Evaluation of population densities of the common wolf spider Pardosa agrestis (Araneae: Lycosidae) in hungarian alfalfa fields using mark recapture. Eur J Entomol 97:191–195CrossRefGoogle Scholar
  31. Lang AB, Kalko EKV, Römer H, Bockholdt C, Dechmann DK (2006) Activity levels of bats and katydids in relation to lunar cycle. Oecologia 146:659–666PubMedCrossRefGoogle Scholar
  32. Long A (2019) Especies comunes y raras en la flora de las sierras australes bonaerenses: causas históricas, ecológicas y ambientales. Parte I. Tesis Doctoral. Universidad Nacional del Sur, Bahía Blanca, Argentina.
  33. M´Rabet MS, Henaut Y, Sepulveda A, Rojo R, Calme S, Geissen V (2007) Soil preference and burrow structure of an endangered tarantula, Brachypelma vagans (Mygalomorphae: Theraphosidae). J Nat Hist 41:1025–1033CrossRefGoogle Scholar
  34. Main BY (1987) Persistence of invertebrates in small areas case studies: of trapdoor spiders in Western Australia. In: Saunders DA (ed) Nature conservation: the role of remnants of native vegetation. Surrey Beatty & Sons, Chipping NortonGoogle Scholar
  35. Main BY (2001) Historical ecology, responses to current ecological changes and conservation of Australian spiders. J Insect Conserv 5(1):9–25CrossRefGoogle Scholar
  36. Miller GL, Miller PR (1987) Life cycle and courtship behavior of the burrowing wolf spider Geolycosa turricola (Treat) (Araneae, Lycosidae). J Arachnol 15:385–394Google Scholar
  37. Neethling JA, Haddad CR (2019) Influence of some abiotic factors on the activity patterns of trapdoor spiders, scorpions and camel spiders in a central South African grassland. Tans R Soc S Afr 74:107–114CrossRefGoogle Scholar
  38. Pérez CA, Frangi JL (2000) Grassland biomass dynamics an altitudinal gradient in the Pampa. J Range Manag 53:518–528CrossRefGoogle Scholar
  39. Pérez-Miles F, Costa FG, Toscano-Gadea C, Miganone A (2005) Ecology and behaviour of the ‘road tarantulas’ Eupalaestrus weijenberghi and Acanthoscurria suina (Araneae, Theraphosidae) from Uruguay. J Nat Hist 39:483–498CrossRefGoogle Scholar
  40. Pétillon J, Decae A, Deruytter D, Renault D, Bonte D (2012) Habitat use, but not dispersal limitation, as the mechanism behind the aggregated population structure of the mygalomorph species Atypus affinis. Anim Biol 62(2):181–192CrossRefGoogle Scholar
  41. Pompozzi G, Schwerdt L, Copperi S, Ferretti N (2019) Do disturbed environments affect density of the tunnel-web spider Acanthogonatus centralis (Mygalomorphae: Nemesiidae) from native grasslands in Argentina? Turk J Zool 43(1):146–151CrossRefGoogle Scholar
  42. Postiglioni R, Perafán C, Perdomo C, Panzera A, Costa FG, Pérez-Miles F (2013) Testing male preferences in female size and choosiness along the mating season in the tarantula spider Eupalaestrus weijenberghi. Bol Soc Zool Urug 22(1):23–31Google Scholar
  43. Procheş Ş, Warren M, McGeoch MA, Marshall DJ (2010) Spatial scaling and transition in pneumatophore arthropod communities. Ecography 33(1):128–136CrossRefGoogle Scholar
  44. Reichling SB (2000) Group dispersal in juvenile Brachypelma vagans (Araneae, Theraphosidae). J Arachnol 28(2):248–251CrossRefGoogle Scholar
  45. Reichling SB, Baker C, Swatzell C (2011) Aggregations of Sphodros rufipes (Araneae: Atypidae) in an urban forest. J Arachnol 39:503–505CrossRefGoogle Scholar
  46. Schoener TW, Toft CA (1983) Dispersion of a small-island population of the spider Metepeira daytona (Araneae: Araneidae) in relation to web site availability. Behav Ecol Sociobiol 12(2):121–128CrossRefGoogle Scholar
  47. Schwerdt L, de Villalobos AE, Pérez-Miles F (2018) Spiders as potential bioindicators of mountain grasslands health: the Argentine tarantula Grammostola vachoni (Araneae, Theraphosidae). Wildl Res 45(1):64–71CrossRefGoogle Scholar
  48. Schwerdt L, Pompozzi G, de Villalobos AE, Pérez-Miles F (2019) Trophic traits of Grammostola vachoni, a tarantula (Araneae: Theraphosidae) from Argentina. Aust J Zool 66(3):228–234CrossRefGoogle Scholar
  49. Shillington C, McEwen B (2006) Activity of juvenile tarantulas in and around the maternal burrow. J Arachnol 34(1):261–265CrossRefGoogle Scholar
  50. Shook RS (1978) Ecology of the wolf spider, Lycosa carolinensis Walckenaer (Araneae, Lycosidae) in a desert community. J Arachnol 6:53–64Google Scholar
  51. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123PubMedCrossRefGoogle Scholar
  52. Southwood TRE, Henderson PA (2009) Ecological methods. Wiley, New YorkGoogle Scholar
  53. Souza-Silva M, Igor Guimarães S, Brescovit A (2014) Bionomic aspects of Prorachias bristowei (Araneae: Mygalomorphae: Nemesiidae): burrow density and shape, food items, body size and reproduction. Stud Neotrop Fauna 49(2):106–113CrossRefGoogle Scholar
  54. Tigar BJ, Osborne PE (1999) The influence of the lunar cycle on ground-dwelling invertebrates in an Arabian desert. J Arid Environ 43:171–182CrossRefGoogle Scholar
  55. Vandermeer J (1990) Elementary mathematical ecology. Krieger Publishing Co., MalabarGoogle Scholar
  56. Wilson RJ, Davies ZG, Thomas CD (2010) Linking habitat use to range expansion rates in fragmented landscapes: a metapopulation approach. Ecography 33(1):73–82CrossRefGoogle Scholar
  57. Yáñez M, Floater G (2000) Spatial distribution and habitat preference of the endangered tarantula, Brachypelma klaasi (Araneae: Theraphosidae) in Mexico. Biodivers Conserv 9:795–810CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Recursos Renovables de la Zona Semiárida-CONICETCERZOSBahía BlancaArgentina
  2. 2.Universidad Nacional del SurBahía BlancaArgentina
  3. 3.Sección Entomología, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations