Advertisement

Journal of Insect Conservation

, Volume 23, Issue 5–6, pp 933–943 | Cite as

Contrasting patterns of genetic and morphological diversity in the bumblebee Bombus lucorum (Hymenoptera: Apidae: Bombus) along a European gradient

  • Nuria Blasco-Lavilla
  • Concepción Ornosa
  • Denis Michez
  • Pilar De la RúaEmail author
ORIGINAL PAPER

Abstract

The Iberian Peninsula is known to have acted as a glacial refugium for many species during the Pleistocene in Europe. Several phylogeographical studies have been carried out within the genus Bombus which indicate a genetic differentiation of some of its species in the southern European peninsulas. Bombus lucorum (Linnaeus, 1761) is one of the three cryptic species belonging to the B. lucorum complex. In recent years, this complex has been widely studied; however, there is a lack of information about the genetic diversity of this species and its possible postglacial recolonization events. To overcome this knowledge gap, in this study several populations from the centre of the Iberian Peninsula to Belgium have been characterized using mitochondrial and nuclear markers (cox1 barcoding and 11 microsatellite loci) and the geometric morphometrics of the wings. Results from cox1 indicate a genetic differentiation of the population of Sierra de Guadarrama at the centre of the Iberian Peninsula, while microsatellite loci and geometric morphometrics analyses do not show any population structure. These results point to a past event of genetic differentiation of B. lucorum in the Iberian Peninsula although they also suggest a current gene flow with populations from mainland Europe.

Keywords

Bombus lucorum Gene flow Genetic differentiation Population structure Glacial refugium Iberian Peninsula 

Notes

Acknowledgements

This study was supported by the projects E-RTA2014-00003-C03 (Spanish National Institute for Agricultural and Food Research and Technology, and European Regional Development Fund), AGL2015-64825-R (MINECO, Spanish Ministry of Economy and Competitivity) and 19908/GERM/2015 of Regional Excellence (Seneca Foundation, CARM). Sampling permissions were obtained from the corresponding authorities (Parques Nacionales de Ordesa, Aigüestortes y Monte Perdido y Sierra de Guadarrama). N. B-L is supported by the grant FPU14/05189. The authors wish to thank Ana Isabel Asensio for her technical support, Dr. Carlos Ruiz for comments on an earlier version, Jonathan M. Smith for English edition and two anonymous reviewers for their comments that clearly improve the manuscript.

Supplementary material

10841_2019_178_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1350 kb)

References

  1. Archer FI, Adams PE, Schneiders BB (2017) Stratag: an R package for manipulating, summarizing and analysing population genetic data. Mol Ecol Resour 17:5–11PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aytekin MA, Terzo M, Rasmont P, Çağatay N (2007) Landmark based geometric morphometric analysis of wing shape in Sibiricobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). Ann Soc Entomol Fr 43:95–102CrossRefGoogle Scholar
  3. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bertsch A (1997) Abgrenzung der Hummel-Arten Bombus cryptarum und B. lucorum mittels männlicher Labialdrüsen-Sekrete und morphologischer Merkmale (Hymenoptera, Apidae). Entomol Gen 22:129–145CrossRefGoogle Scholar
  5. Bertsch A (2009) Barcoding cryptic bumblebee taxa: B. lucorum, B. crytarum and B. magnus, a case study. Beitr Entomol 59:287–310Google Scholar
  6. Bertsch A, Schweer H, Titze A (2004) Discrimination of the bumblebee species Bombus lucorum, B. cryptarum and B. magnus by morphological characters and male labial gland secretions. Beitr Entomol 54:365–386Google Scholar
  7. Bertsch A, Schweer H, Titze A, Tanaka H (2005) Male labial gland secretions and mitochondrial DNA markers support species status of Bombus cryptarum and B. magnus (Hymenoptera, Apidae). Insect Soc 52:45–54CrossRefGoogle Scholar
  8. Boettcher PJ, Tixier-Boichard M, Toro MA, Simianer H, Eding H, Gandini G et al (2010) Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. An Genet 41:64–77CrossRefGoogle Scholar
  9. Bossert S (2015) Recognition and identification of bumblebee species in the Bombus lucorum-complex (Hymenoptera, Apidae)—a review and outlook. Deut Entomol Z 62:19CrossRefGoogle Scholar
  10. Bossert S, Gereben-Krenn BA, Neumayer J, Schneller B, Krenn HW (2016) The cryptic Bombus lucorum complex (Hymenoptera: Apidae) in Austria: phylogeny, distribution, habitat usage and a climatic characterization based on COI sequence data. Zool Stud 55:2016–2055Google Scholar
  11. Boursot P, Bonhomme F (1986) Génétique et évolution du génome mitochondrial des Métazoaires. Genet Sel Evol 18:73–98PubMedPubMedCentralCrossRefGoogle Scholar
  12. Campbell NA, Atchley WR (1981) The geometry of canonical variate analysis. Syst Biol 30:268–280CrossRefGoogle Scholar
  13. Carolan JC, Murray TE, Fitzpatrick Ú, Crossley J, Schmidt H, Cederberg B et al (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS ONE 7:e29251PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cejas D, Ornosa C, Muñoz I, De la Rúa P (2019) Preliminary report on cross-species microsatellite amplification for bumblebee biodiversity and conservation studies. Archivos de Zootecnia 68:422–426Google Scholar
  15. Cooper SJB, Hewitt GM (1993) Nuclear DNA sequence divergence between parapatric subspecies of the grasshopper Chorthippus parallelus. Insect Mol Biol 2:185–194PubMedCrossRefGoogle Scholar
  16. Dehon M, Perrard A, Engel MS, Nel A, Michez D (2017) Antiquity of cleptoparasitism among bees revealed by morphometric and phylogenetic analysis of a Paleocene fossil nomadine (Hymenoptera: Apidae). Syst Entomol 42:543–554CrossRefGoogle Scholar
  17. Dockx C (2007) Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.), in Cuba. Biol J Linn Soc 92:605–616CrossRefGoogle Scholar
  18. Duennes MA, Lozier JD, Hines HM, Cameron SA (2012) Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Mol Phylogenet Evol 64:219–231PubMedCrossRefGoogle Scholar
  19. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  20. Estoup A, Scholl A, Pouvreau A, Solignac M (1995) Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by high variable microsatellites. Mol Ecol 4:89–93PubMedCrossRefGoogle Scholar
  21. Estoup A, Solignac M, Cornuet J, Goudet J, Scholl A (1996) Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Mol Ecol 5:19–31PubMedCrossRefGoogle Scholar
  22. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  23. Françoso E, Arias MC (2013) Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini-barcode. Mol Ecol Resour 13:844–850PubMedCrossRefGoogle Scholar
  24. Françoso E, de Oliveira FF, Arias MC (2016) An integrative approach identifies a new species of bumblebee (Hymenoptera: Apidae: Bombini) from northeastern Brazil. Apidologie 47:171–185CrossRefGoogle Scholar
  25. Francoy TM, Grassi ML, Imperatriz-Fonseca VL, de Jesús May-Itzá W, Quezada-Euán JJG (2011) Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie 42:499–507CrossRefGoogle Scholar
  26. Gerard M, Michez D, Fournier D, Maebe K, Smagghe G, Biesmeijer JC et al (2015) Discrimination of haploid and diploid males of Bombus terrestris (Hymenoptera; Apidae) based on wing shape. Apidologie 46:644–653CrossRefGoogle Scholar
  27. Gómez A, Lunt DH (2007) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N (eds) Phylogeography of southern European refugia. Springer, Netherlands, Dordrecht, pp 155–188CrossRefGoogle Scholar
  28. Habel JC, Schmitt T, Müller P (2005) The fourth paradigm pattern of post-glacial range expansion of European terrestrial species: the phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera). J Biogeogr 32:1489–1497CrossRefGoogle Scholar
  29. Ivanova NV, Dewaard JR, Hebert PD (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002CrossRefGoogle Scholar
  30. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405PubMedCrossRefPubMedCentralGoogle Scholar
  31. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94PubMedPubMedCentralCrossRefGoogle Scholar
  32. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555PubMedCrossRefPubMedCentralGoogle Scholar
  33. Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4(8):782–788CrossRefGoogle Scholar
  34. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kozmus P, Virant-Doberlet M, Meglič V, Dovč P (2011) Identification of Bombus species based on wing venation structure. Apidologie 42:472–480CrossRefGoogle Scholar
  36. Lecocq T, Dellicour S, Michez D, Lhomme P, Vanderplanck M, Valterová I et al (2013a) Scent of a break-up: phylogeography and reproductive trait divergences in the red-tailed bumblebee (Bombus lapidarius). BMC Evol Biol 13:263PubMedPubMedCentralCrossRefGoogle Scholar
  37. Lecocq T, Vereecken NJ, Michez D, Dellicour S, Lhomme P, Valterova I et al (2013b) Patterns of genetic and reproductive traits differentiation in mainland vs. Corsican populations of bumblebees. PLoS ONE 8:e65642PubMedPubMedCentralCrossRefGoogle Scholar
  38. Lecocq T, Brasero N, Martinet B, Valterova I, Rasmont P (2015) Highly polytypic taxon complex: interspecific and intraspecific integrative taxonomic assessment of the widespread pollinator Bombus pascuorum Scopoli 1763 (Hymenoptera: Apidae). Syst Entomol 40:881–890CrossRefGoogle Scholar
  39. Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116CrossRefGoogle Scholar
  40. Lepais O, Darvill B, O’Connor S, Osborne JL, Sanderson RA, Cussans J et al (2010) Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Mol Ecol 19:819–831PubMedCrossRefGoogle Scholar
  41. Maebe K, Karise R, Meeus I, Mänd M, Smagghe G (2019) Pattern of population structuring between Belgian and Estonian bumblebees. Sci Rep 9(1):9651PubMedPubMedCentralCrossRefGoogle Scholar
  42. McKendrick L, Provan J, Fitzpatrick Ú, Brown MJ, Murray TE, Stolle E et al (2017) Microsatellite analysis supports the existence of three cryptic species within the bumble bee Bombus lucorum sensu lato. Conserv Genet 183:573–584CrossRefGoogle Scholar
  43. Mikkola K (1984) Spring migrations of wasp and bumblebee queens across the Gulf of Finland (Hymenoptera: Vespidae and Apidae). Not Entomol 64:125–128Google Scholar
  44. Moreira AS, Horgan FG, Murray TE, Kakouli-Duarte T (2015) Population genetic structure of Bombus terrestris in Europe: isolation and genetic differentiation of Irish and British populations. Mol Ecol 24:3257–3268PubMedCrossRefPubMedCentralGoogle Scholar
  45. Murray TE, Fitzpatrick Ú, Brown MJ, Paxton RJ (2008) Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conserv Genet 9:653–666CrossRefGoogle Scholar
  46. Ornosa C, Ortiz-Sánchez FJ (2004) Hymenoptera: Apoidea I. CSIC Press, MadridGoogle Scholar
  47. Penado A, Rebelo H, Goulson D (2016) Spatial distribution modelling reveals climatically suitable areas for bumblebees in undersampled parts of the Iberian Peninsula. Insect Conserv Diver 9(5):391–401CrossRefGoogle Scholar
  48. Potapov GS, Kondakov AV, Kolosova YS, Tomilova AA, Filippov BY, Gofarov MY et al (2018) Widespread continental mtDNA lineages prevail in the bumblebee fauna of Iceland. ZooKeys 774:141CrossRefGoogle Scholar
  49. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353PubMedCrossRefPubMedCentralGoogle Scholar
  50. Powney GD, Carvell C, Edwards M, Morris RK, Roy HE, Woodcock BA, Isaac NJ (2019) Widespread losses of pollinating insects in Britain. Nat Commun 10:1018PubMedPubMedCentralCrossRefGoogle Scholar
  51. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  52. Queller DC, Strassmann JE, Hughes CR (1993) Microsatellites and kinship. Trends Ecol Evol 8:285–288PubMedCrossRefGoogle Scholar
  53. Rasmont P (1984) Les bourdons du genre Bombus Latreille sensu stricto en Europe Occidentale et Centrale (Hymenoptera, Apidae). Spixiana 7:135–160Google Scholar
  54. Rasmont P, Franzén M, Lecocq T, Harpke A, Roberts SP, Biesmeijer JC et al (2015) Climatic risk and distribution atlas of European bumblebees. BioRisk 10:1–236CrossRefGoogle Scholar
  55. Rohlf FJ (2016) tpsDig2 ver 2.32. Department of Ecology & Evolution, State University of New York, Stony BrookGoogle Scholar
  56. Rohlf FJ (2017a) tpsSmall ver 1.34. Department of Ecology & Evolution, State University of New York, Stony BrookGoogle Scholar
  57. Rohlf FJ (2017b) tpsUtil ver 1.74. Department of Ecology & Evolution, State University of New York, Stony BrookGoogle Scholar
  58. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  59. Sánchez-Bayo F, Wyckhuys KA (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27CrossRefGoogle Scholar
  60. Schachter-Broide J, Dujardin JP, Kitron U, Gürtler RE (2004) Spatial structuring of Triatoma infestans (Hemiptera, Reduviidae) populations from northwestern Argentina using wing geometric morphometry. J Med Entomol 41:643–649PubMedPubMedCentralCrossRefGoogle Scholar
  61. Schmitt T, Seitz A (2004) Low diversity but high differentiation: the population genetics of Aglaope infausta (Zygaenidae: Lepidoptera). J Biogeogr 31:137–144CrossRefGoogle Scholar
  62. Schutze MK, Jessup A, Clarke AR (2012) Wing shape as a potential discriminator of morphologically similar pest taxa within the Bactrocera dorsalis species complex (Diptera: Tephritidae). Bull Entomol Res 102:103–111PubMedCrossRefGoogle Scholar
  63. Scriven JJ, Woodall LC, Tinsley MC, Knight ME, Williams PH, Carolan JC et al (2015) Revealing the hidden niches of cryptic bumblebees in Great Britain: implications for conservation. Biol Conserv 182:126–133CrossRefGoogle Scholar
  64. Smouse RPP, Peakall R (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539PubMedPubMedCentralCrossRefGoogle Scholar
  65. Tofilski A (2008) Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies. Apidologie 39:558–563CrossRefGoogle Scholar
  66. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  67. Vesterlund SR, Sorvari J, Vasemägi A (2014) Molecular identification of cryptic bumblebee species from degraded samples using PCR–RFLP approach. Mol Ecol Resour 14:122–126PubMedCrossRefGoogle Scholar
  68. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedPubMedCentralGoogle Scholar
  69. Waters J, Darvill B, Lye GC, Goulson D (2011) Niche differentiation of a cryptic bumblebee complex in the Western Isles of Scotland. Insect Conserv Diver 4:46–52CrossRefGoogle Scholar
  70. Widmer A, Schmid-Hempel P (1999) The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae). Mol Ecol 8:387–398PubMedCrossRefPubMedCentralGoogle Scholar
  71. Widmer A, Schmid-Hempel P, Estoup A, Scholl A (1998) Population genetic structure and colonization history of Bombus terrestris sl (Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity 81:563–572CrossRefGoogle Scholar
  72. Williams PH, Brown MJF, Carolan JC, An J, Goulson D, Aytekin AM et al (2012) Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Syst Biodivers 10:21–56CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Zoología y Antropología Física, Facultad de VeterinariaUniversidad de MurciaMurciaSpain
  2. 2.Departamento de Biodiversidad, Ecología y Evolución Facultad de Ciencias BiológicasUniversidad ComplutenseMadridSpain
  3. 3.Laboratory of Zoology, Research Institute of BiosciencesUniversity of MonsMonsBelgium

Personalised recommendations