A century of local changes in bumblebee communities and landscape composition in Belgium

  • Sarah VrayEmail author
  • Orianne RollinEmail author
  • Pierre Rasmont
  • Marc Dufrêne
  • Denis Michez
  • Nicolas Dendoncker


Bumblebees (Bombus spp.) are declining in most parts of Western Europe. Many studies have highlighted the role of agricultural intensification and urbanisation in this decline, and some have also shown the influence of landscape composition on bumblebee populations. However, very few studies have explored bumblebee communities prior to the onset of these major land use changes, and those studies that do are mostly based on low-resolution spatial data. Here, we perform a comparative analysis based on detailed landscape composition and bumblebee occurrence records between the early twentieth century (1910–1930) and the contemporary period (2013–2015) in four localities representative of Belgium. We show that bumblebee assemblages changed drastically over this period, and that the decline in richness was strongest in areas with the greatest increase in urbanization and agricultural intensification. The one locality still retaining a high proportion of grasslands, orchards and woodlands with the smallest overall change in landscape composition still hosts a rich bumblebee fauna, very similar than in the past. We provide recommendations for land use management based on these findings. We also warn about the importance of other factors such as land use intensity, climatic conditions and altitude, which should be included in any future study addressing changes in bumblebee populations related to land use changes.


Biodiversity Community Species richness Agricultural practices Conservation 



This research was supported by the Belgian Science Policy (Project BR/132/A1/BELBEES). We thank the Royal Belgian Institute of Natural Sciences of Brussels, especially W. Dekoninck and Y. Gerard, for the access to the F.J. Ball collection of bumblebees. We also want to thank T. Kervyn for his help in georeferencing the centenary topographic maps, as well as D. Brogna and C. De Montpellier d’Annevoie for their advice in the realization of land cover maps. For their help in sampling, we would like to thank N. Brasero, F. Colin, D. De Grave, M. De Munter, T. Delandsheer, C. Deschepper, D. Evrard, M. Folschweiller, M. Gérard, L. Krapf, T. Lecocq, F. Marlière, L. Marshall, B. Martinet, P. Raquez, and K. Schoonvaere. We also thank T. Wood for his proofreading.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10841_2019_139_MOESM1_ESM.doc (24.8 mb)
Supplementary material 1 (DOC 25402 KB)


  1. Aguirre-Gutiérrez J, Kissling WD, Biesmeijer JC et al (2017) Historical changes in the importance of climate and land use as determinants of Dutch pollinator distributions. J Biogeogr 44:696–707. CrossRefGoogle Scholar
  2. Ahrné K, Bengtsson J, Elmqvist T (2009) Bumble bees (Bombus spp) along a gradient of increasing urbanization. PLoS ONE 4:e5574. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baldock KCR, Goddard MA, Hicks DM et al (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc Biol Sci. Google Scholar
  4. Ball JF (1914) Les bourdons de la Belgique. Ann Soc Entomol Belgique 58:77–108Google Scholar
  5. Ball JF (1920) Notes supplémentaires sur les bourdons de la Belgique. Bull Ann Soc Entomol Belgique 60:31–43Google Scholar
  6. Banaszak J (1992) Strategy for conservation of wild bees in an agricultural landscape. Agr Ecosyst Environ 40:179–192. CrossRefGoogle Scholar
  7. Barlow T, Thorburn R (eds) (2000) Balancing conservation and production in grassy landscapes: proceedings of the Bushcare Grassy Landscapes Conference Clare, South Australia 19–21 August 1999. Environment Australia, CanberraGoogle Scholar
  8. Belgian Federal government (2017) Statistics Belgium—Statistiques & Chiffres. Accessed 15 Feb 2017
  9. Berger WH, Parker FL (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science 168:1345–1347CrossRefPubMedGoogle Scholar
  10. Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354. CrossRefPubMedGoogle Scholar
  11. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349. CrossRefGoogle Scholar
  12. Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol (Amst) 23:453–460. CrossRefGoogle Scholar
  13. Cameron SA, Lozier JD, Strange JP et al (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci 108:662–667. CrossRefPubMedGoogle Scholar
  14. Carvalheiro LG, Kunin WE, Keil P et al (2013) Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol Lett 16:870–878. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carvell C (2002) Habitat use and conservation of bumblebees (Bombus spp.) under different grassland management regimes. Biol Conserv 103:33–49. CrossRefGoogle Scholar
  16. Carvell C, Roy DB, Smart SM et al (2006) Declines in forage availability for bumblebees at a national scale. Biol Cons 132:481–489. CrossRefGoogle Scholar
  17. Carvell C, Jordan WC, Bourke AFG et al (2011) Molecular and spatial analyses reveal links between colony-specific foraging distance and landscape-level resource availability in two bumblebee species. Oikos 121:734–742. CrossRefGoogle Scholar
  18. Christians C (1998) Quarante ans de politique agricole européenne commune et d’agriculture en Belgique. Bull Soc Géograph Liège 35:41–55Google Scholar
  19. Croxton PJ, Carvell C, Mountford JO, Sparks TH (2002) A comparison of green lanes and field margins as bumblebee habitat in an arable landscape. Biol Cons 107:365–374. CrossRefGoogle Scholar
  20. De Palma A, Kuhlmann M, Roberts SPM et al (2015) Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. J Appl Ecol 52:1567–1577. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Deguines N, Julliard R, Flores M de, Fontaine C (2016) Functional homogenization of flower visitor communities with urbanization. Ecol Evol 6:1967–1976. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Diaz-Forero I, Kuusemets V, Mänd M et al (2011) Effects of forest habitats on the local abundance of bumblebee species: a landscape-scale study. Baltic For 17:8Google Scholar
  23. Diaz-Forero I, Kuusemets V, Mänd M et al (2013) Influence of local and landscape factors on bumblebees in semi-natural meadows: a multiple-scale study in a forested landscape. J Insect Conserv 17:113–125. CrossRefGoogle Scholar
  24. ESRI ESRI (2011) ArcGIS desktop. Redlands, CaliforniaGoogle Scholar
  25. Fuchs R, Herold M, Verburg PH et al (2015) Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Glob Change Biol 21:299–313. CrossRefGoogle Scholar
  26. Garbuzov M, Ratnieks FLW, Thompson K (2014) Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct Ecol. Google Scholar
  27. Geslin B, Gauzens B, Thébault E, Dajoz I (2013) Plant pollinator networks along a gradient of urbanisation. PLoS ONE 8(5):e63421. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. CrossRefGoogle Scholar
  29. Goulson D, Hanley ME, Darvill B, Ellis JS (2006) Biotope associations and the decline of bumblebees (Bombus spp.). J Insect Conserv 10:95–103. CrossRefGoogle Scholar
  30. Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208. CrossRefPubMedGoogle Scholar
  31. Goulson D, Lepais O, O’Connor S et al (2010) Effects of land use at a landscape scale on bumblebee nest density and survival. J Appl Ecol 47:1207–1215. CrossRefGoogle Scholar
  32. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. CrossRefPubMedGoogle Scholar
  33. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596. CrossRefPubMedGoogle Scholar
  34. Hagen M, Wikelski M, Kissling WD (2011) Space use of bumblebees (Bombus spp.) revealed by radio-tracking. PLoS ONE 6:e19997. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hall DM, Camilo GR, Tonietto RK, Ollerton J, Ahrne K, Arduser M, Ascher JS, Baldock KCR, Fowler R, Frankie G, Goulson D, Gunnarsson B, Hanley ME, Jackson JI, Langellotto G, Lowenstein D, Minor ES, Philpott SM, Potts SG, Sirohi MH, Spevak EM, Stone GN, Threlfall CG (2017) The city as a refuge for insect pollinators. Conserv Biol 31:24–29. CrossRefPubMedGoogle Scholar
  36. Hatfield RG, LeBuhn G (2007) Patch and landscape factors shape community assemblage of bumble bees, Bombus spp. (Hymenoptera: Apidae), in montane meadows. Biol Cons 139:150–158. CrossRefGoogle Scholar
  37. Heck KL, Belle G, Simberloff D (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:1459–1461. CrossRefGoogle Scholar
  38. Hennig EI, Ghazoul J (2011) Plant–pollinator interactions within the urban environment. Perspectives in plant ecology. evol syst 13:137–150Google Scholar
  39. Hoehn P, Steffan-Dewenter I, Tscharntke T (2010) Relative contribution of agroforestry, rainforest and openland to local and regional bee diversity. Biodivers Conserv 19:2189–2200. CrossRefGoogle Scholar
  40. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586. CrossRefPubMedGoogle Scholar
  41. Iserbyt S, Durieux E-A, Rasmont P (2008) The remarkable diversity of bumblebees (Hymenoptera: Apidae: Bombus) in the Eyne Valley (France, Pyrénées-Orientales). Ann Soc Entomol France (NS) 44:211–241. CrossRefGoogle Scholar
  42. Iserbyt S, Vray S, Dendoncker N et al (2015) High-resolution distribution of bumblebees (Bombus spp.) in a mountain area marked by agricultural decline. Ann Soc Entomol France (NS) 51:375–391. CrossRefGoogle Scholar
  43. Kells AR, Goulson D (2003) Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK. Biol Cons 109:165–174CrossRefGoogle Scholar
  44. Kerr JT, Pindar A, Galpern P et al (2015) Climate change impacts on bumblebees converge across continents. Science 349:177–180. CrossRefPubMedGoogle Scholar
  45. Kindt R, Coe R (2005) Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, NairobiGoogle Scholar
  46. Kleijn D, Raemakers IP (2008) A retrospective analysis of pollen host plant use by stable and declining bumblebee species. Ecology 89:1811–1823CrossRefPubMedGoogle Scholar
  47. Kleijn D, Kohler F, Báldi A et al (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc B 276:903–909. CrossRefPubMedGoogle Scholar
  48. Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M (2011) The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years: HYDE 3.1 Holocene land use. Glob Ecol Biogeogr 20:73–86. CrossRefGoogle Scholar
  49. Knight ME, Martin AP, Bishop S et al (2005) An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol Ecol 14:1811–1820. CrossRefPubMedGoogle Scholar
  50. Kosior A, Celary W, Olejniczak P et al (2007) The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of Western and Central Europe. Oryx 41:79–88. CrossRefGoogle Scholar
  51. Kreyer D, Oed A, Walther-Hellwig K, Frankl R (2004) Are forests potential landscape barriers for foraging bumblebees? Landscape scale experiments with Bombus terrestris agg. and Bombus pascuorum (Hymenoptera, Apidae). Biol Cons 116:111–118. CrossRefGoogle Scholar
  52. Le Féon V, Schermann-Legionnet A, Delettre Y et al (2010) Intensification of agriculture, landscape composition and wild bee communities: a large scale study in four European countries. Agr Ecosyst Environ 137:143–150. CrossRefGoogle Scholar
  53. Legendre P, Legendre LFJ (2012) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  54. Mänd M, Sepp K, Truu J (2001) Landscape structure and bumble bee communities. Acta Hort 561:159–163. CrossRefGoogle Scholar
  55. Marshall L, Biesmeijer JC, Rasmont P et al (2017) The interplay of climate and land use change affects the distribution of EU bumblebees. Glob Change Biol 24:101–116. CrossRefGoogle Scholar
  56. Mazoyer M, Roudart L (2006) A history of world agriculture | from the neolithic age to the current crisis | Taylor & Francis Group. Monthly Review Press, New YorkGoogle Scholar
  57. McFrederick QS, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biol Conserv 129:372–382. CrossRefGoogle Scholar
  58. Meunier F (1888) Tableau dichotomique des Espèces, variétés Belges du Genre Bombus. Latreille Nat Sicil 7:173–176Google Scholar
  59. Mihoub J-B, Henle K, Titeux N et al (2017) Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures. Sci Rep 7:41591. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ministère de l’Agriculture et des Travaux Publics (2013) Recensement général de 1910. In: Statistiques de la Belgique : Agriculture. BruxellesGoogle Scholar
  61. Moquet L, Vanderplanck M, Moerman R et al (2017) Bumblebees depend on ericaceous species to survive in temperate heathlands. Insect Conserv Divers 10:78–93. CrossRefGoogle Scholar
  62. Nieto A, Roberts SPM, Kemp J et al (2014) European red list of bees. Publications Office, LuxembourgGoogle Scholar
  63. Normandin É, Vereecken NJ, Buddle CM, Fournier V (2017) Taxonomic and functional trait diversity of wild bees in different urban settings. PeerJ 5:e3051. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Öckinger E, Smith HG (2007) Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J Appl Ecol 44:50–59. CrossRefGoogle Scholar
  65. Oksanen J, Blanchet FG, Kindt R et al (2011) Vegan: community ecology packageGoogle Scholar
  66. Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev 5:317–335. Google Scholar
  67. Osborne JL, Martin AP, Carreck NL et al (2008a) Bumblebee flight distances in relation to the forage landscape. J Anim Ecol 77:406–415. CrossRefPubMedGoogle Scholar
  68. Osborne JL, Martin AP, Shortall CR et al (2008b) Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J Appl Ecol. Google Scholar
  69. Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. CrossRefPubMedGoogle Scholar
  70. Pywell RF, Warman EA, Hulmes L et al (2006) Effectiveness of new agri-environment schemes in providing foraging resources for bumblebees in intensively farmed landscapes. Biol Cons 129:192–206. CrossRefGoogle Scholar
  71. R Development Core Team (2017) R: A language and environment for statistical computing, version 3.4.2. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0Google Scholar
  72. Ramankutty N, Foley JA, Olejniczak NJ (2002) People on the Land: changes in global population and croplands during the 20th century. AMBIO 31:251–257. CrossRefPubMedGoogle Scholar
  73. Rasmont P, Mersch P (1988) First estimation of faunistic drift by bumblebees of Belgium, (Hymenoptera: Apidae). Ann Soc. R Zool Belgique 118:141–147Google Scholar
  74. Rasmont P, Terzo M (2010) Catalogue et clé des sous-genres et espèces du genre Bombus de Belgique et du nord de la France (Hymenoptera, Apoidea). Université de Mons, Laboratoire de Zoologie, BelgiumGoogle Scholar
  75. Rasmont P, Pauly A, Terzo M et al (2006) The survey of wild bees (Hymenoptera, Apoidea) in Belgium and France. Rome, ItalyGoogle Scholar
  76. Rasmont P, Roberts S, Cederberg B et al (2015a) Bombus. Version 3.1. The IUCN red list of threatened species 2015.
  77. Rasmont P, Franzén M, Lecocq T et al (2015b) Climatic risk and distribution atlas of European Bumblebees. BIORISK 10:1–236. CrossRefGoogle Scholar
  78. Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176. CrossRefGoogle Scholar
  79. Rollin O, Bretagnolle V, Decourtye A et al (2013) Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agr Ecosyst Environ 179:78–86. CrossRefGoogle Scholar
  80. Rollin O, Bretagnolle V, Fortel L et al (2015) Habitat, spatial and temporal drivers of diversity patterns in a wild bee assemblage. Biodivers Conserv 24:1195–1214. CrossRefGoogle Scholar
  81. Roulston TH, Goodell K (2011) The role of resources and risks in regulating wild bee populations. Annu Rev Entomol 56:293–312. CrossRefPubMedGoogle Scholar
  82. Samnegard U, Persson A, Smith H (2011) Gardens benefit bees and enhance pollination in intensively managed farmland. Biol Cons 144:2602–2606. CrossRefGoogle Scholar
  83. Schweiger O, Biesmeijer JC, Bommarco R et al (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev 85:777–795. PubMedGoogle Scholar
  84. Senapathi D, Carvalheiro LG, Biesmeijer JC et al (2015) The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc R Soc B 282:20150294. CrossRefPubMedGoogle Scholar
  85. Steffan-Dewenter I, Münzenberg U, Christof B et al (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432. CrossRefGoogle Scholar
  86. Svensson B, Lagerlöf J, Svensson G B (2000) Habitat preferences of nest-seeking bumble bees (Hymenoptera: Apidae) in an agricultural landscape. Agr Ecosyst Environ 77:247–255. CrossRefGoogle Scholar
  87. Tscharntke T, Tylianakis JM, Rand TA et al (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685. CrossRefPubMedGoogle Scholar
  88. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363. CrossRefPubMedGoogle Scholar
  89. Vray S, Lecocq T, Roberts SPM, Rasmont P (2017) Endangered by laws: potential consequences of regulations against thistles on bumblebee conservation. Ann Soc Entomol France (NS) 53(1):33–41. CrossRefGoogle Scholar
  90. Walther-Hellwig K, Frankl R (2000) Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., Apidae), in an agricultural landscape. J Appl Entomol 124:299–306. CrossRefGoogle Scholar
  91. Westphal C, Steffan-Dewenter I, Tscharntke T (2006) Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia 149:289–300CrossRefPubMedGoogle Scholar
  92. Westphal C, Bommarco R, Carré G et al (2008) Measuring bee diversity in different european habitats and biogeographical regions. Ecol Monogr 78:653–671. CrossRefGoogle Scholar
  93. Williams PH (1986) Environmental change and the distributions of British bumble bees (Bombus Latr.). Bee World 67:50–61CrossRefGoogle Scholar
  94. Williams PH (1988) Habitat use by bumble bees (Bombus spp.). Ecol Entomol 13:223–237CrossRefGoogle Scholar
  95. Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387. CrossRefGoogle Scholar
  96. Williams PH, Araújo MB, Rasmont P (2007) Can vulnerability among British bumblebee (Bombus) species be explained by niche position and breadth? Biol Cons 138:493–505CrossRefGoogle Scholar
  97. Williams P, Colla S, Xie Z (2009) Bumblebee vulnerability: common correlates of winners and losers across three continents. Conserv Biol 23:931–940. CrossRefPubMedGoogle Scholar
  98. Williams NM, Crone EE, Roulston TH et al (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Cons 143:2280–2291. CrossRefGoogle Scholar
  99. Wolf S, Moritz RFA (2008) Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie 39:419–427. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental Research and InnovationLuxembourg Institute of Science and TechnologyBelvauxLuxembourg
  2. 2.Laboratory of Zoology, Research Institute of BiosciencesUniversity of MonsMonsBelgium
  3. 3.Department of Geography, Research Group on Sustainable DevelopmentUniversity of NamurNamurBelgium
  4. 4.Biodiversity & LandcapesGembloux Agro-Bio Tech, University of LiègeGemblouxBelgium

Personalised recommendations