Advertisement

Host plant selection and differential survival on two Aristolochia L. species in an insular population of Zerynthia cassandra

  • Alessandro Cini
  • Adele Bordoni
  • Gea Ghisolfi
  • Lorenzo Lazzaro
  • Leonardo Platania
  • Lorenzo Pasquali
  • Riccardo Negroni
  • Fulvia Benetello
  • Andrea Coppi
  • Franca Zanichelli
  • Leonardo DapportoEmail author
ORIGINAL PAPER
  • 105 Downloads

Abstract

Understanding host plant preference and the relative quality of resource provided by co-occurring host plants is a key step to predict butterfly species abundance and responses to environmental changes, and, consequently, to plan management measures. Zerynthia cassandra is an Italian endemic species strongly dependent on the availability of its host plants, Aristolochia rotunda and Aristolochia lutea. The insular population occurring on Elba island (Tuscan Archipelago) is highly threatened, because of limited host plant distribution, small population size and apparent lack of gene flow with the mainland. In 2017, we carried out field surveys and rearing experiments to (i) identify the characteristics of the host plants (vegetative status) and the site characteristics (aspect, irradiation, distance from other patches) correlated with the number of eggs occurring on individual plants, (ii) compare larval growth, food-conversions rate and larval and adult survivorship on the two host plants species. Egg occurrence depends on patch irradiation, the number of leaves and flowers occurring on individual plants and the occurrence of nearby patches. These findings allowed to identify the optimal Aristolochia patch features for egg laying and development. Laboratory rearing success was higher than 50% and although plant species did not show a significant effect on oviposition, we found that larval and adult survival was higher on A. rotunda. Our results suggest habitat management aimed at increasing resource availability for Z. cassandra and possible ex-situ conservation actions aimed at recovering the population in case of potential catastrophic events.

Keywords

Zerynthia cassandra Aristolochia Egg laying Laboratory rearing Elba island 

Notes

Acknowledgements

We thank Umberto Mazzantini, Dr. Brunella Perito, Dr. Bruno Foggi for helping in collecting the data. The study has been conducted in collaboration with the Tuscan Archipelago National Park.

Funding

Funds were provided to LD by the University of Florence and by the Ministero dell’Ambiente e della Tutela del Territorio e del Mare, through the project “Insetti di valore conservazionistico: presenza, status e interazioni con specie di fitopatogeni”, Progetto di sistema of Italian National Parks, “Biodiversità” directive.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. Any applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Specimens were collected and reared in the laboratory after permission from the Italian Ministero dell’Ambiente e della Tutela del Territorio e del Mare (Prot. 0012493/PNM 24/06/2015).

References

  1. Balletto E, Bonelli S, Barbero F, Casacci LP, Sbordoni V, Dapporto L, Scalercio S, Zilli A, Battistoni A, Teofili C, Rondinini C (2015) Lista Rossa IUCN delle Farfalle Italiane-Ropaloceri. Comitato Italiano IUCN Ministero dell’Ambiente e della Tutela del Territorio e del Mare, RomeGoogle Scholar
  2. Bonelli S, Cerrato C, Loglisci N, Balletto E (2011) Population extinctions in the Italian diurnal lepidoptera: an analysis of possible causes. J Insect Conserv 15:879–890.  https://doi.org/10.1007/s10841-011-9387-6 CrossRefGoogle Scholar
  3. Bryk F (1932) Neue Thais-Rassen. Parnassiana 2:66Google Scholar
  4. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  5. Camerini G, Groppali R, Minerbi T (2018) Observations on the ecology of the endangered butterfly Zerynthia cassandra in a protected area of Northern Italy. J Insect Conserv 22:41–49.  https://doi.org/10.1007/s10841-017-0036-6 CrossRefGoogle Scholar
  6. Celik T (2012) Adult demography, spatial distribution and movements of Zerynthia polyxena (Lepidoptera: Papilionidae) in a dense network of permanent habitats. Eur J Entomol 109:217CrossRefGoogle Scholar
  7. Curtis RJ, Brereton TM, Dennis RLH et al (2015) Butterfly abundance is determined by food availability and is mediated by species traits. J Appl Ecol 52:1676–1684.  https://doi.org/10.1111/1365-2664.12523 CrossRefGoogle Scholar
  8. Dapporto L (2009) Speciation in Mediterranean refugia and post-glacial expansion of Zerynthia polyxena (Lepidoptera, Papilionidae). J Zool Syst Evol Res.  https://doi.org/10.1111/j.1439-0469.2009.00550.x CrossRefGoogle Scholar
  9. Dapporto L, Dennis RLH (2008) Island size is not the only consideration. Ranking priorities for the conservation of butterflies on Italian offshore islands. J Insect Conserv 12:237–249.  https://doi.org/10.1007/s10841-008-9150-9 CrossRefGoogle Scholar
  10. Dapporto L, Cini A, Menchetti M et al (2017) Rise and fall of island butterfly diversity: understanding genetic differentiation and extinction in a highly diverse archipelago. Divers Distrib 23:1169–1181.  https://doi.org/10.1111/ddi.12610 CrossRefGoogle Scholar
  11. Dennis RLH (2010) A resource-based habitat view for conservation: butterflies in the British landscape. Wiley, ChichesterCrossRefGoogle Scholar
  12. Dennis RL, Dapporto L, Shreeve TG et al (2008) Butterflies of European islands: the implications of the geography and ecology of rarity and endemicity for conservation. J Insect Conserv 12:205–236CrossRefGoogle Scholar
  13. Fattorini S (2009) Both Recent and Pleistocene geography determine animal distributional patterns in the Tuscan Archipelago. J Zool 277:291–301.  https://doi.org/10.1111/j.1469-7998.2008.00540.x CrossRefGoogle Scholar
  14. Fleishman E, Ray C, Sjogren-Gulve P et al (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716.  https://doi.org/10.1046/j.1523-1739.2002.00539.x CrossRefGoogle Scholar
  15. Fournier DA, Skaug HJ, Ancheta J et al (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249.  https://doi.org/10.1080/10556788.2011.597854 CrossRefGoogle Scholar
  16. Ghesini S, Magagnoli S, Marini M (2018) Biology and conservation of Zerynthia cassandra (Lepidoptera, Papilionidae) in semi-natural environments and agricultural landscapes. J Insect Conserv 22:151–161.  https://doi.org/10.1007/s10841-018-0049-9 CrossRefGoogle Scholar
  17. Jordano D, Gomariz G (1994) Variation in phenology and nutritional quality between host plants and its effect on larval performance in a specialist butterfly, Zerynthia rumina. Entomol Exp Appl 71:271–277.  https://doi.org/10.1111/j.1570-7458.1994.tb01794.x CrossRefGoogle Scholar
  18. Krauss J, Steffan-Dewenter I, Müller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28:465–474.  https://doi.org/10.1111/j.0906-7590.2005.04201.x CrossRefGoogle Scholar
  19. Lewis OT, Thomas CD (2001) Adaptations to captivity in the butterfly Pieris brassicae (L.) and the implications for ex situ conservation. J Insect Conserv 5:55–63CrossRefGoogle Scholar
  20. Murphy SM (2004) Enemy-free space maintains swallowtail butterfly host shift. Proc Natl Acad Sci 101:18048–18052.  https://doi.org/10.1073/pnas.0406490102 CrossRefPubMedGoogle Scholar
  21. Nardi E (1984) The genus «Aristolochia» L. (Aristolochiaceae) in Italy. Webbia 38:221–300.  https://doi.org/10.1080/00837792.1984.10670308 CrossRefGoogle Scholar
  22. Rausher MD, Feeny P (1980) Herbivory, plant density, and plant reproductive success: the effect of Battus philenor on Aristolochia reticulata. Ecology 61:905–917.  https://doi.org/10.2307/1936760 CrossRefGoogle Scholar
  23. Redford KH, Amato G, Baillie J et al (2011) What does it mean to successfully conserve a (vertebrate) species? BioScience 61:39–48.  https://doi.org/10.1525/bio.2011.61.1.9 CrossRefGoogle Scholar
  24. Scriber JM, Lederhouse RC (1983) Temperature as a factor in the development and feeding ecology of tiger swallowtail caterpillars, Papilio glaucus (Lepidoptera). Oikos.  https://doi.org/10.2307/3544203 CrossRefGoogle Scholar
  25. Sforzi A, Bartolozzi L (2001) Libro rosso degli insetti della Toscana. ARSIA, FirenzeGoogle Scholar
  26. Slancarova J, Vrba P, Platek M et al (2015) Co-occurrence of three Aristolochia -feeding Papilionids (Archon apollinus, Zerynthia polyxena and Zerynthia cerisy) in Greek Thrace. J Nat Hist 49:1825–1848.  https://doi.org/10.1080/00222933.2015.1006281 CrossRefGoogle Scholar
  27. Thompson JN, Pellmyr O (1991) Evolution of oviposition behavior and host preference in Lepidoptera. Annu Rev Entomol 36:65–89.  https://doi.org/10.1146/annurev.en.36.010191.000433 CrossRefGoogle Scholar
  28. Valimaki P, Itamies J (2005) Effects of canopy coverage on the immature stages of the Clouded Apollo butterfly [Parnassius mnemosyne (L.)] with observations on larval behaviour. Entomol Fenn 16:117–123Google Scholar
  29. Vovlas A, Balletto E, Altini E et al (2014) Mobility and oviposition site-selection in Zerynthia cassandra (Lepidoptera, Papilionidae): implications for its conservation. J Insect Conserv 18:587–597.  https://doi.org/10.1007/s10841-014-9662-4 CrossRefGoogle Scholar
  30. Witzenberger KA, Hochkirch A (2011) Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers Conserv 20:1843–1861.  https://doi.org/10.1007/s10531-011-0074-4 CrossRefGoogle Scholar
  31. Zinetti F, Dapporto L, Vovlas A et al (2013) When the rule becomes the exception. No evidence of gene flow between two Zerynthia cryptic butterflies suggests the emergence of a new model group. PLoS ONE.  https://doi.org/10.1371/journal.pone.0065746 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alessandro Cini
    • 1
    • 2
  • Adele Bordoni
    • 1
  • Gea Ghisolfi
    • 1
  • Lorenzo Lazzaro
    • 1
  • Leonardo Platania
    • 1
  • Lorenzo Pasquali
    • 1
  • Riccardo Negroni
    • 1
  • Fulvia Benetello
    • 1
  • Andrea Coppi
    • 1
  • Franca Zanichelli
    • 3
  • Leonardo Dapporto
    • 1
    Email author
  1. 1.Dipartimento di BiologiaUniversità degli Studi di FirenzeSesto Fiorentino, FlorenceItaly
  2. 2.Centre for Biodiversity and Environment ResearchUniversity College LondonLondonUK
  3. 3.Parco Nazionale Arcipelago ToscanoPortoferraioItaly

Personalised recommendations