Advertisement

Comparative study of spatial patterns and ecological niches of beetles in two Malaysian mountains elevation gradients

  • Muneeb M. Musthafa
  • Fauziah Abdullah
  • Uriel Jeshua Sánchez-Reyes
ORIGINAL PAPER

Abstract

The study of beetle communities is a valuable approach for biogeographical and conservation studies because their species and ecological diversities are very high, and they take different roles in ecosystems. However, beetle macroecology and conservation studies are disproportionately scarce, especially in tropical Asia. The objective of this study is to compare beetle abundance, diversity and species richness along the elevation gradients in two mountains in Peninsular Malaysia. Three passive sampling methods were utilized for beetle sampling with four marked elevation gradients: 500 m, 1000 m, 1500 m and 1800 m. Species richness in Fraser’s Hill was higher at highest elevation, but this value was not-significantly different from these in other elevations, except for the site at 1000 m with significantly lower estimates. Genting Highlands showed a significant decrease in species richness with the increase in elevation, without differences between the higher elevation sites. Pairwise comparison of species richness, Simpson Dominance and Shannon diversity between same elevation sites of Fraser’s Hill and Genting Highlands were all significantly different. The levels of vertical and horizontal colonization have had comparatively different weights in terms of their effect on the pattern of diversity and the integration of the beetle community in these two localities. At Fraser’s Hill, similar conditions at different elevations drives different responses, whereas at Genting Highlands contrasting and different environmental conditions at each elevation, drives different responses. We suggest the potential use of these results for biodiversity conservation in terms of climate variables in accordance with niche patterns.

Keywords

Beetle Biodiversity Composition Conservation Elevation Niche Habitat 

Notes

Acknowledgements

Authors would like to thank Prof. Jesús Gómez-Zurita (Institute of Evolutionary Biology, Spain), Prof. Frederic Guichard (McGill University, Canada) and Dr. Jani Heino ​(Finnish Environment Institute, Finland) for their extended revision of the manuscript. This study was financed by Vot RP004E/13SUS and PG059/2014B. We would like to thank Mohd Shukri Mohd DSabri and Davindram A/L Rajendram for their kind help. Thanks are due to Universiti Kebangsaan Malaysia for logistics and accommodation, and the Forestry Department is acknowledged for making available forest rangers into the forest trails.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Supplementary material

10841_2018_99_MOESM1_ESM.docx (59 kb)
Online Appendix (DOCX 58 KB)

References

  1. Ashworth AC (2001) Chap. 8: perspectives on quaternary beetles and climate change. In: Gerhard LC, Harrison WE, Hanson BM (eds) Geological perspectives of global climate change. American Association of Petroleum Geologists Studies in Geology, Tulsa, pp 153–168Google Scholar
  2. Bastias CC, Fortunel C, Valladares F, Baraloto C, Benavides R, Cornwell W et al (2017) Intraspecific leaf trait variability along a boreal-to-tropical community diversity gradient. PLoS ONE 12:e0172495.  https://doi.org/10.1371/journal.pone.0172495 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Beccacece HM, Zeballos SR, Zapata AI (2016) Changes in species richness and composition of tiger moths (Lepidoptera: Erebidae: Arctiinae) among three neotropical ecoregions. PLoS ONE 11:e0162661.  https://doi.org/10.1371/journal.pone.0162661 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bertuzzo E, Carrara F, Mari L, Altermatt F, Rodriguez-Iturbe I, Rinaldo A (2016) Geomorphic controls on elevational gradients of species richness. Proc Natl Acad Sci USA 113:1737–1742.  https://doi.org/10.1073/pnas.1518922113 CrossRefPubMedGoogle Scholar
  5. Bishop TR, Robertson MP, van Rensburg BJ, Parr CL (2014) Elevation-diversity patterns through space and time: ant communities of the Maloti-Drakensberg Mountains of southern Africa. J Biogeogr 41:2256–2268.  https://doi.org/10.1111/jbi.12368 CrossRefGoogle Scholar
  6. Bommarco R (1998) Reproduction and energy reserves of a predatory carabid beetle relative to agroecosystem complexity. Ecol Appl 8(3):846–853.  https://doi.org/10.2307/2641271 CrossRefGoogle Scholar
  7. Bouzan A, Flinte V, Macedo MV, Monteiro RF (2015) Elevation and temporal distributions of Chrysomelidae in southeast Brazil with emphasis on the Galerucinae. ZooKeys 547:103–117.  https://doi.org/10.3897/zookeys.547.9723 CrossRefGoogle Scholar
  8. Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951.  https://doi.org/10.1007/978-90-481-2807-5_1 CrossRefGoogle Scholar
  9. Büchi L, Vuilleumier S (2014) Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am Nat 183(5):612–624.  https://doi.org/10.1086/675756 CrossRefPubMedGoogle Scholar
  10. Chao A, Colwell RK, Lin CW, Gotelli NJ (2009) Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90:1125–1133.  https://doi.org/10.1890/07-2147.1 CrossRefGoogle Scholar
  11. Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228.  https://doi.org/10.1890/080216 CrossRefGoogle Scholar
  12. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples, Version 9. http://purl.oclc.org/estimates
  13. Cornell HV (2013) Is regional species diversity bounded or unbounded? Biol Rev 88:140–165.  https://doi.org/10.1111/j.1469-185x.2012.00245.x CrossRefGoogle Scholar
  14. Cronin DT, Libalah MB, Bergl RA, Hearn GW (2014) Biodiversity and conservation of tropical montane ecosystems in the Gulf of Guinea, West Africa. Arct Antarct Alp Res 46:891–904.  https://doi.org/10.1657/1938-4246-46.4.891 CrossRefGoogle Scholar
  15. Crowson RA (1981) The biology of the Coleoptera. Academic Press, London, p 802Google Scholar
  16. Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514.  https://doi.org/10.1111/j.0030-1299.2008.16215.x CrossRefGoogle Scholar
  17. Diniz-filho JAF, De Marco JR, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Diver 3:172–179.  https://doi.org/10.1111/j.1752-4598.2010.00091.x CrossRefGoogle Scholar
  18. Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927.  https://doi.org/10.2307/177351 CrossRefGoogle Scholar
  19. Ernst CM, Buddle CM (2015) Drivers and patterns of ground-dwelling beetle biodiversity across Northern Canada. PLoS ONE 10:e0122163.  https://doi.org/10.1371/journal.pone.0122163 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Fattorini S, Ulrich W (2012) Drivers of species richness in European Tenebrionidae (Coleoptera). Acta Oecol 43:22–28.  https://doi.org/10.1016/j.actao.2012.05.003 CrossRefGoogle Scholar
  21. Freeman BG, Freeman AMC, Hochachka WM (2016) Asymmetric interspecific aggression in New Guinean songbirds that replace one another along an elevational gradient. IBIS Int J Avian Sci 158:726–737.  https://doi.org/10.1111/ibi.12384 CrossRefGoogle Scholar
  22. Gallou A, Baillet Y, Ficetola GF, Després L (2017) Elevational gradient and human effects on butterfly species richness in the French Alps. Ecol Evol 7:3672–3681.  https://doi.org/10.1002/ece3.2803 CrossRefPubMedCentralPubMedGoogle Scholar
  23. Ghazoul J (2016) Dipterocarp biology, ecology, and conservation. Oxford University Press, OxfordCrossRefGoogle Scholar
  24. Gillman LN, Wright SD (2014) Species richness and evolutionary speed: the influence of temperature, water and area. J Biogeogr 41:39–51.  https://doi.org/10.1111/jbi.12173 CrossRefGoogle Scholar
  25. Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 39–54Google Scholar
  26. Graham CH, Hijmans RJ (2006) A comparison of methods for mapping species ranges and species richness. Glob Ecol Biogeogr 15:578–587.  https://doi.org/10.1111/j.1466-8238.2006.00257.x CrossRefGoogle Scholar
  27. Grand J, Cushman SA (2003) A multi-scale analysis of species-environment relationships: breeding birds in a pitch pine-scrub oak (Pinus rigidaQuercus ilicifolia) community. Biol Conserv 112:307–317.  https://doi.org/10.1016/s0006-3207(02)00323-3 CrossRefGoogle Scholar
  28. Guo Q, Kelt DA, Sun Z, Liu H, Hu L, Ren H, We J (2013) Global variation in elevational diversity patterns. Sci Rep 3:3007–3011.  https://doi.org/10.1038/srep03007 CrossRefPubMedGoogle Scholar
  29. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  30. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853CrossRefGoogle Scholar
  31. Hansen MC, Egorov A, Potapov PV, Stehman SV, Tyukavina A, Turubanova SA, Roy DP, Goetz SJ, Loveland TR, Ju J, Kommareddy A, Kovalskyy V, Forsyth C, Bents T (2014) Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD). Remote Sens Environ 140:466–484CrossRefGoogle Scholar
  32. Heino J, Alahuhta J (2015) Elements of regional beetle faunas: faunal variation and compositional breakpoints along climate, land cover and geographical gradients. J Anim Ecol 84:427–441.  https://doi.org/10.1111/1365-2656.12287 CrossRefGoogle Scholar
  33. Herzog SK, Hamel-Leigue AC, Larsen TH, Mann DJ, Soria-Auza RW, Gill BD, Edmonds WD, Spector S (2013) Elevational distribution and conservation biogeography of Phanaeine dung beetles (Coleoptera: Scarabaeinae) in Bolivia. PLoS ONE 8:e64963.  https://doi.org/10.1371/journal.pone.0064963 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Hortal J, Borges PAV, Gaspar C (2006) Evaluating the performance of species richness estimators: sensitivity to sample grain size. J Anim Ecol 75:274–287.  https://doi.org/10.1111/j.1365-2656.2006.01048.x CrossRefGoogle Scholar
  35. Hughes AC (2017) Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8:e01624.  https://doi.org/10.1002/ecs2.1624 CrossRefGoogle Scholar
  36. Ifo SA, Moutsambote J-M, Koubouana F, Yoka J, Ndzai SF, Bouetou-Kadilamio LNO et al (2016) Tree species diversity, richness, and similarity in intact and degraded forest in the tropical rainforest of the Congo Basin: case of the forest of Likouala in the Republic of Congo. Int J For Res.  https://doi.org/10.1155/2016/7593681 CrossRefGoogle Scholar
  37. Imai N, Tanaka A, Samejima H, Sugau JB, Pereira JT, Titin J, Kurniawan Y, Kitayama K (2014) Tree community composition as an indicator in biodiversity monitoring of REDD. For Ecol Manage 313:169–179.  https://doi.org/10.1016/j.foreco.2013.10.041 CrossRefGoogle Scholar
  38. Imai N, Furukawa T, Tsujino R, Kitamura S, Yumoto T (2018) Factors affecting forest area change in Southeast Asia during 1980–2010. PLoS ONE 13(5):e0197391.  https://doi.org/10.1371/journal.pone.0197391 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Jeyarajasingam A (2012) A field guide to the birds of Peninsular Malaysia and Singapore. Oxford University Press, OxfordGoogle Scholar
  40. Jiménez-Valverde A, Hortal J (2003) Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Revista Ibérica de Aracnología 8:151–161Google Scholar
  41. Jost L (2006) Entropy and diversity. Oikos 113:363–375.  https://doi.org/10.1111/j.2006.0030-1299.14714.x CrossRefGoogle Scholar
  42. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439.  https://doi.org/10.1890/06-1736.1 CrossRefGoogle Scholar
  43. Jung JK, Kim ST, Lee SY, Park CG, Park JK, Lee JH (2014) A comparison of diversity and species composition of ground beetles (Coleoptera: Carabidae) between conifer plantations and regenerating forests in Korea. Ecol Res 29:877–887.  https://doi.org/10.1007/s11284-014-1175-9 CrossRefGoogle Scholar
  44. Karasiewicz S, Dolédec S, Lefebvre S (2017) Within outlying mean indexes: refining the OMI analysis for the realized niche decomposition. PeerJ 5:e3364.  https://doi.org/10.7717/peerj.3364 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Khurelpurev O, Pfeiffer M (2017) Coleoptera in the Altai Mountains (Mongolia): species richness and community patterns along an ecological gradient. J Asia-Pacific Biodivers 10:362–370.  https://doi.org/10.1016/j.japb.2017.06.007 CrossRefGoogle Scholar
  46. Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382.  https://doi.org/10.1046/j.1365-2656.2003.00710.x CrossRefGoogle Scholar
  47. Körner CH (2004) Mountain biodiversity, its causes and function. Ambio 13:11–17Google Scholar
  48. Körner C (2012) Global mountain statistics based on treeline elevation. In: Körner C (ed) Alpine treelines. Springer, Basel, pp 57–62CrossRefGoogle Scholar
  49. Körner CH, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, Spehn EM (2017) A global inventory of mountains for bio-geographical applications. Alp Bot 127:1–15.  https://doi.org/10.1007/s00035-016-0182-6 CrossRefGoogle Scholar
  50. Laurance WF, Useche DC, Shoo LP, Herzog SK, Kessler M, Escobar F et al (2011) Global warming, elevational ranges and the vulnerability of tropical biota. Biol Conserv 144:548–557.  https://doi.org/10.1016/j.biocon.2010.10.010 CrossRefGoogle Scholar
  51. Lee C-B, Chun J-W (2016) Environmental drivers of patterns of plant diversity along a wide environmental gradient in Korean temperate forests. Forests 7:19–35.  https://doi.org/10.3390/f7010019 CrossRefGoogle Scholar
  52. Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: An ecological and conservation synthesis. Island Press, WashingtonGoogle Scholar
  53. Lomolino MV (2001) Elevation gradients of species–density: historical and prospective views. Glob Ecol Biogeogr 10:3–13.  https://doi.org/10.1046/j.1466-822x.2001.00229.x CrossRefGoogle Scholar
  54. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, OxfordGoogle Scholar
  55. Mahon CL, Holloway G, Sólymos P, Cumming SG, Bayne EM, Schmiegelow FKA, Song SJ (2016) Community structure and niche characteristics of upland and lowland western boreal birds at multiple spatial scales. For Ecol Manage 361:99–116.  https://doi.org/10.1016/j.foreco.2015.11.007 CrossRefGoogle Scholar
  56. Marleau JN, Guichard F, Loreau M (2014) Meta-ecosystem dynamics and functioning on finite spatial networks. Proc R Soc B Biol Sci 281:20132094.  https://doi.org/10.1098/rspb.2013.2094 CrossRefGoogle Scholar
  57. Maveety SA, Browne RA, Erwin TL (2011) Carabidae diversity along an altitudinal gradient in a Peruvian cloud forest (Coleoptera). ZooKeys 147:651–666.  https://doi.org/10.3897/zookeys.147.2047 CrossRefGoogle Scholar
  58. May R, Catenazzi A, Corl A, Santa-Cruz R, Carnaval AC, Moritz C (2017) Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient. Ecol Evol 7:3257–3267.  https://doi.org/10.1002/ece3.2929 CrossRefGoogle Scholar
  59. Menéndez R, González-Megías A, Jay-Robert P, Marquéz-Ferrando R (2014) Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges. Glob Ecol Biogeogr 23:646–657.  https://doi.org/10.1111/geb.12142 CrossRefGoogle Scholar
  60. Meyer WM, Eble JA, Franklin K, McManus RB, Brantley SL, Henkel J et al (2015) Ground-dwelling arthropod communities of a sky island mountain range in southeastern Arizona, USA: obtaining a baseline for assessing the effects of climate change. PLoS ONE 10:e0135210.  https://doi.org/10.1371/journal.pone.0135210 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Ministry of Natural Resources and Environment (2009) Fourth national report to the convention on biological diversity. Government of Malaysia, PutrajayaGoogle Scholar
  62. Morlon H, Kefi S, Martinez ND (2014) Effects of trophic similarity on community composition. Ecol Lett 17:1495–1506.  https://doi.org/10.1111/ele.12356 CrossRefGoogle Scholar
  63. Moura MR, Villalobos F, Costa GC, Garcia PCA (2016) Disentangling the role of climate, topography and vegetation in species richness gradients. PLoS ONE 11:e0152468.  https://doi.org/10.1371/journal.pone.0152468 CrossRefPubMedCentralPubMedGoogle Scholar
  64. Nguyen DT, Gómez-Zurita J (2016) Subtle ecological gradient in the tropics triggers high species-turnover in a local geographical scale. PLoS ONE 11:e0156840.  https://doi.org/10.1371/journal.pone.0156840 CrossRefPubMedCentralPubMedGoogle Scholar
  65. Nichols E, Larsen TB, Spector S, Davis ALV, Escobar F, Favila M, Vulinec K (2007) Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol Conserv 137:1–19.  https://doi.org/10.1016/j.biocon.2007.01.023 CrossRefGoogle Scholar
  66. Olden JD (2006) Biotic homogenization: a new research agenda for conservation biogeography. J Biogeogr 33:2027–2039.  https://doi.org/10.1111/j.1365-2699.2006.01572.x CrossRefGoogle Scholar
  67. Pardo I, Pata MP, Gómez D, García MB (2013) A novel method to handle the effect of uneven sampling effort in biodiversity databases. PLoS ONE 8:e52786.  https://doi.org/10.1371/journal.pone.0052786 CrossRefPubMedCentralPubMedGoogle Scholar
  68. Peh KS-H, Soh MCK, Sodhi NS, Laurance WF, Ong DF, Clements R (2011) Up in the clouds: is sustainable use of tropical montane cloud forests possible in Malaysia? Bioscience 61:27–38.  https://doi.org/10.1525/bio.2011.61.1.8 CrossRefGoogle Scholar
  69. Pellissier L (2015) Stability and the competition-dispersal trade-off as drivers of speciation and biodiversity gradients. Front Ecol Evol 3(52):1–10.  https://doi.org/10.3389/fevo.2015.00052 CrossRefGoogle Scholar
  70. Ratcliffe S, Holzwarth F, Nadrowski K, Levick S, Wirth C (2015) Tree neighborhood matters—tree species composition drives diversity-productivity patterns in a near-natural beech forest. For Ecol Manage 335:225–234.  https://doi.org/10.1016/j.foreco.2014.09.032 CrossRefGoogle Scholar
  71. Sánchez-Reyes UJ, Niño-Maldonado S, Barrientos-Lozano L, Clark SM, Jones RW (2016) Faunistic patterns of leaf beetles (Coleoptera, Chrysomelidae) within elevational and temporal gradients in Sierra de San Carlos. Mexico ZooKeys 611:11–56.  https://doi.org/10.3897/zookeys.611.9608 CrossRefGoogle Scholar
  72. Sasakawa K, Kim J-L, Kim J-K, Kubota K (2017) Morphological phylogeny and biogeography of the Pterostichus raptor species group (Coleoptera: Carabidae) of ground beetles, endemic to the Korean Peninsula and adjacent islands. J Asia-Pacific Entomol 20:7–12.  https://doi.org/10.1016/j.aspen.2016.11.001 CrossRefGoogle Scholar
  73. Schmitt CB, Burgess ND, Coad L, Belokurov A, Besançon C, Boisrobert L et al (2009) Global analysis of the protection status of the world’s forests. Biol Conserv 142:2122–2130.  https://doi.org/10.1016/j.biocon.2009.04.012 CrossRefGoogle Scholar
  74. Schuldt A, Scherer-Lorenzen M (2014) Non-native tree species (Pseudotsuga menziesii) strongly decreases predator biomass and abundance in mixed-species plantations of a tree diversity experiment. For Ecol Manage 327:10–17.  https://doi.org/10.1016/j.foreco.2014.04.036 CrossRefGoogle Scholar
  75. Sharma CM, Baduni NP, Gairola S, Ghildiyal SK, Suyal S (2010) Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. For Ecol Manage 260:2170–2179.  https://doi.org/10.1016/j.foreco.2010.09.014 CrossRefGoogle Scholar
  76. Shuai L-Y, Ren C-L, Yan W-B, Song Y-L, Zeng Z-G (2017) Different elevational patterns of rodent species richness between the southern and northern slopes of a mountain. Sci Rep 7:8743.  https://doi.org/10.1038/s41598-017-09274-2 CrossRefPubMedCentralPubMedGoogle Scholar
  77. Smart SM, Thompson K, Marrs RH, Le Duc MG, Maskell LC, Firbank LG (2006) Biotic homogenization and changes in species diversity across human modified ecosystems. Proc R Soc B Biol Sci 273:2659–2665.  https://doi.org/10.1098/rspb.2006.3630 CrossRefGoogle Scholar
  78. Sodhi NS, Brook BW (2006) Southeast Asian biodiversity in crisis. Cambridge University Press, CambridgeGoogle Scholar
  79. Solar RRdC, Barlow J, Ferreira J, Berenguer E, Lees AC, Thomson JR, Louzada J, Maués M, Moura NG, Oliveira VHF, Chaul JCM et al (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118.  https://doi.org/10.1111/ele.12494 CrossRefPubMedGoogle Scholar
  80. StatSoft Inc. (2007) STATISTICA, Version 8.0. http://www.statsoft.com
  81. Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83CrossRefGoogle Scholar
  82. Thomas CD (2010) Climate, climate change and range boundaries. Divers Distrib 16:488–495.  https://doi.org/10.1111/j.1472-4642.2010.00642.x CrossRefGoogle Scholar
  83. Tremmel M, Müller C (2013) Insect personality depends on environmental conditions. Behav Ecol 24(2):386–392.  https://doi.org/10.1093/beheco/ars175 CrossRefGoogle Scholar
  84. Triplehorn CA, Johnson NF (2005) Borror and DeLong’s introduction to the study of insects, 7th edn. Thompson Brooks/Cole, BelmontGoogle Scholar
  85. van der Hammen T (1995) Global change, biodiversity, and conservation of Neotropical montane forest. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of Neotropical montane forests. Proceedings of the Neotropical montane forest biodiversity and conservation symposium, New York, pp 603–607Google Scholar
  86. Wang S, Loreau M (2016) Biodiversity and ecosystem stability across scales in metacommunities. Ecol Lett 19:510–518.  https://doi.org/10.1111/ele.12582 CrossRefPubMedCentralPubMedGoogle Scholar
  87. Weiss M, Procházka J, Schlaghamerský J, Cizek L (2016) Fine-scale vertical stratification and guild composition of saproxylic beetles in lowland and montane forests: Similar patterns despite low faunal overlap. PLoS ONE 11:e0149506.  https://doi.org/10.1371/journal.pone.0149506 CrossRefPubMedCentralPubMedGoogle Scholar
  88. White RL, Bennett PM (2015) Elevational distribution and extinction risk in birds. PLoS ONE 10:e0121849.  https://doi.org/10.1371/journal.pone.0121849 CrossRefPubMedCentralPubMedGoogle Scholar
  89. Williams VL, Witkowski ETF, Balkwill K (2006) The use of incidence-based species richness estimators, species accumulation curves and similarity measures to appraise ethnobotanical inventories from South Africa. Biodivers Conserv 16:2495–2513.  https://doi.org/10.1007/s10531-006-9026-9 CrossRefGoogle Scholar
  90. Woodruff DS (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers Conserv 19:919–941.  https://doi.org/10.1007/s10531-010-9783-3 CrossRefGoogle Scholar
  91. Xing Y, Ree RH (2017) Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc Natl Acad Sci USA 114:E3444–E3451.  https://doi.org/10.1073/pnas.1616063114 CrossRefGoogle Scholar
  92. Ya’cob Z, Takaoka H, Pramual P, Low VL, Sofian-Azirun M (2016) Breeding habitat preference of preimaginal black flies (Diptera: Simuliidae) in Peninsular Malaysia. Acta Trop 153:57–63.  https://doi.org/10.1016/j.actatropica.2015.10.007 CrossRefPubMedGoogle Scholar
  93. Yang Z, Liu X, Zhou M, Ai D, Wang G, Wang Y, Chu C, Lundholm JT (2015) The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Sci Rep 5:15723.  https://doi.org/10.1038/srep15723 CrossRefPubMedCentralPubMedGoogle Scholar
  94. Yu X-D, Lu L, Luo T-H, Zhou H-Z (2013) Elevational gradient in species richness pattern of epigaeic beetles and underlying mechanisms at east slope of Balang Mountain in Southwestern China. PLoS ONE 8(7):e69177.  https://doi.org/10.1371/journal.pone.0069177 CrossRefPubMedCentralPubMedGoogle Scholar
  95. Zhang W, Huang D, Wang R, Liu J, Du N (2016) Altitudinal patterns of species diversity and phylogenetic diversity across temperate mountain forests of Northern China. PLoS ONE 11:e0159995.  https://doi.org/10.1371/journal.pone.0159995 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Biological Science, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.B513, Toxicology Lab, Institute of Postgraduate StudiesUniversity MalayaKuala LumpurMalaysia
  3. 3.Center of Biotechnology in AgricultureUniversity MalayaKuala LumpurMalaysia
  4. 4.Center of Tropical BiodiversityUniversity MalayaKuala LumpurMalaysia
  5. 5.Tecnológico Nacional de México-Instituto Tecnológico de Ciudad VictoriaCiudad VictoriaMexico

Personalised recommendations