Skip to main content

Advertisement

Log in

Land use modifies Odonata diversity in streams of the Brazilian Cerrado

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

The presence of riparian vegetation provides microclimatic regulation of stream conditions [e.g. luminosity (lux), air temperature (°C) and relative humidity (%)], which varies naturally throughout the day. These variables explain the diurnal behaviour patterns of ectotherms such as Odonata in natural areas. However, human land uses (e.g. pastures) modify the abiotic conditions of riparian environments, favouring the presence of disturbance-tolerant species. In this context, we assess relationships between riparian land use (control streams-natural areas and pasture), abiotic conditions habitat integrity index (in control and pastures streams), (air temperature, luminosity and humidity in control streams), and Odonata diversity (between pasture and control streams and throughout the time of day) in Brazilian savannah (Cerrado) streams. First, the control streams had higher habitat integrity index than pasture. Higher abundance and difference in composition of Odonata species were observed in streams surrounded by pasture relative to natural areas. The conversion of natural areas to pasture near streams was also accompanied by an increase in overall body size of Odonata species. Odonata species richness and abundance in natural areas varied throughout the day, but peaked around 12:00 h, coinciding with changes in air temperature and luminosity. Our study highlights that changes in the physical characteristics of streams through conversion of natural habitats to pasture will change environmental conditions and act as a filter on the distribution and persistence of Odonata species in Cerrado streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Assis JCF, Carvalho AL, Nessimian JL (2004) Composição e preferência por microhábitat de imaturos de Odonata (Insecta) em um trecho de baixada do Rio Ubatiba, Maricá-RJ, Brasil. Rev Bras Entomol 48:273–282

    Article  Google Scholar 

  • Ball-Damerow JE, M’Gonigle LK, Resh VH (2014) Local and regional factors influencing assemblages of dragonflies and damselflies (Odonata) in California and Nevada. J Insect Conserv 18:1027–1036

    Article  Google Scholar 

  • Bleich ME, Mortati AF, André T, Piedade TF (2014) Riparian deforestation affects the structural dynamics of headwater streams in Southern Brazilian Amazonia. Trop Conserv Sci 7:657–676

    Article  Google Scholar 

  • Bleich ME, Piedade MTF, Mortati AFM, André T (2015) Autochthonous primary production in southern Amazon headwater streams: novel indicators of altered environmental integrity. Ecol Ind 53:154–161

    Article  Google Scholar 

  • Bolson SH (2018) O Cerrado nas metas brasileiras do acordo de Paris: a omissão do estado brasileiro com o desmatamento na Cumeeira da América do Sul. Rev Direito Ambien E 4:112–131

    Google Scholar 

  • Borror DJ (1942) A revision of the Libellulinae genus Erythrodiplax (Odonata). The Ohio State Univesity, Columbus

    Google Scholar 

  • Brando PM, Coe MT. Defries R, Azevedo AA (2013) Ecology, economy and management of an agroindustrial frontier landscape in the southeast Amazon. Philos Trans R Soc 368:1–9

    Article  Google Scholar 

  • Brasil LS, Oliveira-Junior JMB, Calvão LB, Carvalho FG, Monteiro-Júnior CS, Dias-Silva K, Juen L (2017) Spatial, biogeographic and environmental predictors of diversity in Amazonian Zygoptera. Insect Divers Conserv 11(2):174–184

    Article  Google Scholar 

  • Butler RG, De Maynadier PG (2008) The significance of littoral and shoreline habitat integrity to the conservation of lacustrine damselflies (Odonata). J Insect Conserv 12:23–36

    Article  Google Scholar 

  • Cabette HSR, Souza RJ, Shimano Y, Juen L (2017) Effects of changes in the riparian forest on the butterfly community (Insecta: Lepidoptera) in Cerrado areas. Rev Bras Entomol 61:43–50

    Article  Google Scholar 

  • Carchini G, Solimini AG, Ruggiero A (2005) Habitat characteristics and odonate diversity in mountain ponds of central Italy. Aquat Conserv Mar Freshw Ecosyst 15:573–581

    Article  Google Scholar 

  • Carvalho FG, Pinto NS, Oliveira-Junior JMB, Juen L (2013) Effects of marginal vegetation removal on Odonata communities. Acta Limnol Bras 25:10–18

    Article  Google Scholar 

  • Casatti L, Langeani F, Ferreira CP (2006) Effects of physical habitat degradation on the stream fish assemblage structure in a pasture region. Environ Manage 38:974–982

    Article  Google Scholar 

  • Corbet PS (1999) Dragonflies behavior and ecology of Odonata. University of Edinburgh, Scotland

    Google Scholar 

  • Corbet OS, May ML (2008) Fliers and perchers among Odonata: dichotomy or multidimensional continuum? A provisional reappraisal. Int J Odonatol 11:155–171

    Article  Google Scholar 

  • Davies-Colley RJ (1997) Stream channels are narrower in pasture than in forest. N Z J Mar Freshw Res 31:599–608

    Article  Google Scholar 

  • De Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology. http://sites.google.com/site/miqueldecaceres/

  • De Marco P Jr, Resende DC (2004) Cues for territory choice in two tropical dragonflies. Neotrop Entomol 33:397–401

    Article  Google Scholar 

  • De Marco P Jr, Nogueira DS, Correa CC, Vieira TB, Silva KD, Pinto NS, Bichsel D, Hirota ASV, Vieira RRS, Carneiro FM, Oliveira AAB, Carvalho P, Bastos RP, Ilg C, Oertli B (2013) Patterns in the organization of Cerrado pond biodiversity in Brazilian pasture landscapes. Hydrobiologia 723:87–101

    Article  Google Scholar 

  • De Marco P Jr, Batista JD, Cabette HSR (2015) Community assembly of adult odonates in tropical streams: an ecophysiological hypothesis. PLoS ONE 10:1–17

    Article  Google Scholar 

  • De Marco P, Resende DC (2002) Activity patterns and thermoregulation in a tropical dragonfly assemblage. Odanotologica 31:129–138

    Google Scholar 

  • Dias-Silva K, Cabette HSR, Juen L, De Marco P Jr (2010) The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zoologia 27(6):918–930

    Article  Google Scholar 

  • Dodds WK, Gido K, Whiles MR, Daniels MD, Grudzinski BP (2015) The stream biome gradient concept: factors controlling lotic systems across broad biogeographic scales. Freshw Sci 34:000–000

    Article  Google Scholar 

  • Dolný A, Harabiš F, Bárta D, Lhota S, Drozd P (2012) Aquatic insects indicate terrestrial habitat degradation: changes in taxonomical structure and functional diversity of dragonflies in tropical rainforest of East Kalimantan. Trop Zool 25:141–157

    Article  Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and Indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Encalada AC, Calles J, Ferreira V, Canhoto CM, Graça MAS (2010) Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshw Biol 55:1719–1733

    Google Scholar 

  • Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol 19:679–688

    Article  Google Scholar 

  • Fernandes JF, Souza ALT, Tanaka MO (2014) Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia 724:175–185

    Article  Google Scholar 

  • Ferreira-Peruquetti P, De Marco P Jr (2002) Efeito da alteração ambiental sobre comunidades de Odonata em riachos de Mata Atlântica de Minas Gerais, Brasil. Rev Bras Zool 19:317–327

    Article  Google Scholar 

  • Foote AL, Hornung CR (2005) Odonates as biological indicators of grazing effects on Canadian prairie wetlands. Ecol Entomol 30:273–283

    Article  Google Scholar 

  • Fulan JA, Henry R (2007) Distribuição temporal de imaturos de Odonata (Insecta) associados a Eichhornia azurea (Kunth) na lagoa do Camargo, Rio Paranapanema, São Paulo. Rev Bras Entomol 51:224–227

    Article  Google Scholar 

  • Garrison RW, von Ellenrieder N, Louton JA (2006) Dragonfly genera of the New World An illustrated and annotated key to the Anisoptera. The Jonhs Hopkins University Press, Baltimore

    Google Scholar 

  • Gotelli NJ, Ellison AM (2011) Análise de dados categóricos. In: Gotelli NJ, Ellison AM Príncipios de estatística em ecologia. Artmed, Porto Alegre

    Google Scholar 

  • Harris RJ (2001) A primer of multivariate statistics. Lawrence Erlbaum Associates Publishers, Mahwah

    Book  Google Scholar 

  • Hassal C, Thompson DJ (2008) The impacts of environmental warming on Odonata: a review. Int J Odonatol 11:131–153

    Article  Google Scholar 

  • Hilário SD, Imperatriz-Fonseca VL, Kleinert AMP (2000) Flight activity and colony strength in the stingless bee Melipona bicolor bicolor (Apidae, Meliponinae). Rev Bras Biol 60:299–306

    Article  Google Scholar 

  • Hilfert-Rüppell D (1998) Temperature dependence of flight activity of Odonata by ponds. Odonatologica 27:45–59

    Google Scholar 

  • IUCN (2016) The IUCN red list of threatened species. https://doi.org/10.2305/IUCN.UK.2009-2.RLTS.T158910A5291074.en. Accessed 27 Sept 2016.

  • Juen L, De Marco P Jr (2007) Odonate assemblage structure in relation to basin and aquatic habitat structure in Pantanal wetlands. Hydrobiologia 579:125–134

    Article  Google Scholar 

  • Juen L, De Marco P Jr (2011) Odonate biodiversity in terra-firme forest streamlets in Central Amazonia: on the relative effects of neutral and niche drivers at small geographical extents. Insect Conserv Divers 4:265–274

    Article  Google Scholar 

  • Juen L, Oliveira-Junior JMB, Shimano Y, Mendes TP, Cabette HSR (2014) Composição e riqueza de Odonata (Insecta) no ecótone Cerrado-Floresta Amazônica em riachos com diferentes níveis de conservação. Acta Amaz 44:175–184

    Article  Google Scholar 

  • Kasper ML, Reeson AF, Mackay DA, Austin AD (2008) Environmental factors influencing daily foraging activity of Vespula germanica (Hymenoptera, Vespidae) in Mediterranean Australia. Insects Sociaux 55:288–295

    Article  Google Scholar 

  • Kietzka GJ, Pryke JS, Samways MJ (2015) Landscape ecological networks are successful in supporting diverse dragonfly assemblage. Insect Conserv Divers 8:229–237

    Article  Google Scholar 

  • Kindt R, Coe R (2005) Analysis of diversity. In: Kindt R, Coe R (eds) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi

    Google Scholar 

  • Klink CA, Machado RB (2005) A conservação do Cerrado brasileiro. Megadiversidade 1:147–155

    Google Scholar 

  • Lambret PH, Stoquert A (2011) Diel pattern of activity of Lestes macrostigma at a breeding site (Odonata: Lestidae). Int J Odonatol 14:175–191

    Article  Google Scholar 

  • Lencioni FAA (2005) Damselflies of Brazil, an illustrated indentification guide: I—the non-Coenagrionidae families. All Print Editora, São Paulo

    Google Scholar 

  • Lencioni FAA (2006) Damselflies of Brazil, an illustrated indentification guide: II—Coenagrionidae families. All Print Editora, São Paulo

    Google Scholar 

  • Marimon BS, Felfili JM, Lima ES (2001) Distribuições de circunferências e alturas em três porções da Mata de Galeria do Córrego Bacaba, Nova Xavantina-MT. Revi Árvore 25:335–343

    Google Scholar 

  • McInnis ML, McIver J (2001) Influence of off-stream supplements on streambanks of riparian pastures. J Range Manag 54:648–652

    Article  Google Scholar 

  • McKay T, Herman T (2008) Thermoregulation in three species of damselflies, with notes on temporal distribution and microhabitat use (Zygoptera: Lestidae). Odonatologica 37:29–39

    Google Scholar 

  • Michelan TS, Thomaz SM, Bini LM (2013) Native macrophyte density and richness affect the invasiveness of a tropical Poaceae species. PLoS ONE 8:60004. https://doi.org/10.1371/journal.pone.0060004

    Article  CAS  Google Scholar 

  • Monteiro Júnior CS, Juen L, Hamada N (2015) Analysis of urban impacts on aquatic habitats in the central Amazon: adult odonates as bioindicators of environmental quality. Ecol Ind 48:303–311

    Article  Google Scholar 

  • Monteiro Júnior CS, Esposito MC, Juen L (2016) Are the adult odonate species found in a protected area different from those present in the surrounding zone? A case study from eastern Amazonia. J Insect Conserv 20:1–12

    Article  Google Scholar 

  • Moore RD, Spittlehouse DL, Story A (2005) Riparian microclimate and stream temperature response to forest harvesting: a review. J Am Water Resour Assoc 41:813–834

    Article  Google Scholar 

  • Nessimian JL, Venticinque EM, Zuanon J, De Marco P Jr, Gordo M, Fidelis L, Batista JD, Juen L (2008) Land use, habitat integrity, and aquatic assemblages in Central Amazonian streams. Hydrobiologia 614:117–131

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: community ecology package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan

  • Oliveira DA, Pietrafesa JP, Barbalho MGS (2008) Manutenção da biodiversidade e o hotspots Cerrado. Caminhos Geogr 9:101–114

    Google Scholar 

  • Oliveira-Junior JMB, Shimano Y, Gardner TA, Hughes RM, De Marco P Jr, Juen L (2015) Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small in the eastern Amazon. Austral Ecol 40:733–744

    Article  Google Scholar 

  • Oliveira-Junior JMB, De M PJr, Dias-Silva K, Leitão RP, Leal CC, Pompeu PS, Gardner TA, Hughes RM, Juen L (2017) Effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica 66:1–39

    Article  Google Scholar 

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–409

    Article  Google Scholar 

  • Pusey BJ, Arthington AH (2003) Importance of the riparian zone to the conservation and management of freshwater fish: a review. Mar Freshw 54:1–16

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for statistical Computing, Vienna

    Google Scholar 

  • Ramos LS, Lozano F, Muzón J (2016) Odonata diversity and synanthropy in urban areas: a case study in Avellaneda City, Buenos Aires, Argentina. Neotrop Entomol. https://doi.org/10.1007/s13744-016-0443-5, 1–7

    Article  Google Scholar 

  • Remsburg AJ, Olson AC, Samways MJ (2008) Shade alone reduces adult dragonfly (Odonata, Libellulidae). Rev Bras Entomol 54:110–114

    Google Scholar 

  • Resende DC, De Marco PJr (2010) First description of reproductive behavior of the Amazonian damselfly Chalcopteryx rutilans (Rambur) (Odonata, Polythoridae). Revista Brasileira de Entomologia 54:436–440

    Article  Google Scholar 

  • Rodrigues ME, Roque FO, Quintero JMO, Pena JCC, Sousa DC, De Marco P Jr (2016) Nonlinear responses in damselfly community along a gradient of habitat loss in savanna landscape. Biol Cons 194:113–120

    Article  Google Scholar 

  • Sprent P, Smeeton NC (2001) Applied nonparametric statistical methods. CRC Press, Florida

    Google Scholar 

  • Steffen W, Grinevald J, Crutzen P, Mcneill J (2011) The Anthropocene: conceptual and historical perspectives. Philos Trans 369:842–867

    Article  Google Scholar 

  • Vilela DS, Ferreira RG, Del-Claro K (2016) The Odonata community of a Brazilian Vereda: seasonal patterns, species diversity and rarity in a palm swamp environment. Biosci J 32:486–495

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Frederico A. A. Lencioni for confirming the identification of species. The staff of the Laboratório de Entomologia de Nova Xavantina (LENX). Lourivaldo A. Castro for help in the field. LBC received a master’s fellowship from CAPES. P. De Marco and L. Juen (process 307597/2016-4) are continuously supported by CNPq productivity grants. Propesp-UFPA for the translation of the manuscript into English. Alistair Campbell for reviewing English. Bruno Spacek Godoy by help in log-linear analysis and anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenize Batista Calvão.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

We have collected the insects in accordance with the protocol described in Lencioni (2006). Moreover, no ethical permit was required during the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 305 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvão, L.B., Juen, L., de Oliveira Junior, J.M.B. et al. Land use modifies Odonata diversity in streams of the Brazilian Cerrado. J Insect Conserv 22, 675–685 (2018). https://doi.org/10.1007/s10841-018-0093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-018-0093-5

Keywords

Navigation