Local and landscape habitat influences on bee diversity in agricultural landscapes in Anolaima, Colombia

  • Marcela Cely-SantosEmail author
  • Stacy M. Philpott


Agricultural intensification drives biodiversity loss and is associated with bee declines. Bees are highly sensitive to environmental change, and while their diversity declines in simplified habitats distant from undisturbed areas, bees respond to agricultural practices and habitat configuration at different scales. Mountainous tropical agroecosystems are highly heterogeneous at local and landscape scales, and the responses of bee communities to environmental change in these regions are still underexplored. We examined the local and landscape habitat factors influencing bee abundance and diversity, and changes in bee generic and tribe composition in Anolaima, Colombia. We surveyed bees, measured local habitat features such as flower abundance, tree diversity, ground cover and vegetation structure, and evaluated land cover types and landscape characteristics in seventeen farms. We found that elevation, vertical structure of the vegetation and landscape structure influenced bee community structure. While local factors predicted the response of most individual bee groups, landscape factors influenced the abundance of Apis and Trigona, two genera with disproportionately high abundances across study sites. We also found that human constructions serve as refuges for several bee genera. Our paper suggests a process of biotic homogenization with the loss of bee diversity and concurrent spread of Apis and Trigona in landscapes dominated by pastures, unshaded crops or eroded soils. We also highlight the high sensitivity of native bees to habitat configuration and disturbance, and the importance of traditional farming systems for the conservation of bee communities in mountainous tropical agroecosystems.


Biotic homogenization Land-use change Tropical agroecosystems Community composition Hymenoptera 



We thank N. Palacios, Y. Pulido, L. Casallas, R. Pinto and S. Currea for assistance with data collection; J. Maldonado, N. Florez, J. Gomez, H. Triana for assistance in bee identification, and R. Ospina for his collaboration at LABUN. We thank (A) Martinez for his assistance with GIS analyses, and C. Cordoba for her insights on the study region. We thank (B) Martinez, Y. Pulido, A. Bermudez, M. Tolosa, M. Arévalo, V. Estevez, L. García, J. Silva, D. Camelo, F. Cristancho, G. Piñeres, F. López, D. Diaz, N. Osorio, A. Cediel, L. Pulido and (C) Murcia for providing access to study sites and information about agricultural management. We thank the JIC reviewer for constructive comments to improve this manuscript. Funding for the research was provided by a Fulbright-Colciencias Scholarship, a Rufford Conservation grant, a Heller Agroecology Grant and Environmental Studies Departmental research grant from the U. of California, Santa Cruz, a Social Sciences Research Council International Dissertation Research Fellowship, and equipment donation by Idea Wild to M. Cely.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10841_2018_122_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 23 KB)
10841_2018_122_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 20 KB)
10841_2018_122_MOESM3_ESM.docx (22 kb)
Supplementary material 3 (DOCX 21 KB)
10841_2018_122_MOESM4_ESM.docx (18 kb)
Supplementary material 4 (DOCX 17 KB)
10841_2018_122_MOESM5_ESM.tif (3 mb)
Figure S1. Rank abundance of bee genera registered across 17 farms in Anolaima, Colombia. Supplementary material 5 (TIF 3044 KB)
10841_2018_122_MOESM6_ESM.tif (205 kb)
Figure S2. Diversity profiles of bees captured across our study sites. Order q=0 (0D) is equal to species richness, giving more weight to rare species; q=1 (1D) is the equivalent of the exponential of Shannon index and the weight of each species is based on its relative abundance. When q=2 (2D) abundant species have a higher weight in the community and the value accounts for the inverse of Simpson index.. Supplementary material 6 (TIF 204 KB)


  1. Alcaldía Municipal de Anolaima (2016) Esquema de Ordenamiento Territorial - Alcaldía Municipal de Anolaima. Anolaima, ColombiaGoogle Scholar
  2. Arena M, Sgolastra F (2014) A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23:324–334CrossRefGoogle Scholar
  3. Badano EI, Vergara CH (2011) Potential negative effects of exotic honey bees on the diversity of native pollinators and yield of highland coffee plantations Agric For Entomol 13:365–372CrossRefGoogle Scholar
  4. Bartoń K (2013) {MuMIn}: multi-model inference, {R} package version 1.9.13. citeulike-article-id:11961261Google Scholar
  5. Basu P, Parui AK, Chatterjee S, Dutta A, Chakraborty P, Roberts S, Smith B (2016) Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes. Ecol Evol 6:6983–6992. CrossRefGoogle Scholar
  6. Betts MG et al (2014) A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography 37:517–527. CrossRefGoogle Scholar
  7. Boreux V, Krishnan S, Cheppudira KG, Ghazoul J (2013) Impact of forest fragments on bee visits and fruit set in rain-fed and irrigated coffee agro-forests. Agric Ecosyst Environ 172:42–48. CrossRefGoogle Scholar
  8. Breed MD, Stocker EM, Baumgartner LK, Vargas SA (2002) Time-place learning and the ecology of recruitment in a stingless bee, Trigona amalthea (Hymenoptera, Apidae). Apidologie 33:251–258. CrossRefGoogle Scholar
  9. Brosi BJ, Daily GC, Ehrlich PR (2007a) Bee community shifts with landscape context in a tropical countryside. Ecol Appl 17:418–430CrossRefGoogle Scholar
  10. Brosi BJ, Daily GC, Shih TM, Oviedo F, Durán G (2007b) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45:773–783CrossRefGoogle Scholar
  11. Burnham K, Anderson D (2004) Multimodel inference: understanding AIC and BIC in model selection sociological. Methods Res 33:261–304. CrossRefGoogle Scholar
  12. Calcagno V, de Mazancourt C (2010) glmulti: An R package for easy automated model selection with (generalized). Linear Models 34:29. Google Scholar
  13. Camargo J, Pedro S, Moure J, Urban D, Melo G (2007) Catalogue of bees (Hymenoptera, Apoidea) in the neotropical region catalogue of bees (Hymenoptera, Apoidea) in the neotropical region. Curitiba 14Google Scholar
  14. Carman K, Jenkins DG (2016) Comparing diversity to flower-bee interaction networks reveals unsuccessful foraging of native bees in disturbed habitats Biol Conserv. 202:110–118. CrossRefGoogle Scholar
  15. Carré G et al (2009) Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric Ecosyst Environ 133:40–47. CrossRefGoogle Scholar
  16. Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547. CrossRefGoogle Scholar
  17. De Palma A et al (2015) Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. J Appl Ecol 52:1567–1577. CrossRefGoogle Scholar
  18. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930. CrossRefGoogle Scholar
  19. EOT A (2016) Esquema de ordenamiento territorial. Anolaima, ColombiaGoogle Scholar
  20. Fisher K, Gonthier DJ, Ennis KK, Perfecto I (2017) Floral resource availability from groundcover promotes bee abundance in coffee agroecosystems. Ecol Appl 27:1815–1826CrossRefGoogle Scholar
  21. Flynn DFB et al (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33CrossRefGoogle Scholar
  22. Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:e1. CrossRefGoogle Scholar
  23. Gámez-Virués S et al (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568. CrossRefGoogle Scholar
  24. Garibaldi LA, Carvalheiro LG, Vaissière BE, Gemmill-Herren B, Hipólito J, Freitas BM, Ngo HT, Azzu N, Sáez A, Åström J, An J (2016) Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Sci 351:388–391CrossRefGoogle Scholar
  25. Giannini TC et al (2015) Native and non-native supergeneralist bee species have different effects on plant-bee networks. PLoS ONE 10:e0137198. CrossRefGoogle Scholar
  26. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci USA 107:16732–16737CrossRefGoogle Scholar
  27. Gill BA, Kondratieff BC, Casner KL, Encalada AC, Flecker AS, Gannon DG, Ghalambor CK, Guayasamin JM, Poff NL, Simmons MP, Thomas SA (2016) Cryptic species diversity reveals biogeographic support for the ‘mountain passes are higher in the tropics’ hypothesis. Proc Biol Sci 283:20160553CrossRefGoogle Scholar
  28. Gonzalez VH, Engel MS (2004) The tropical Andean bee fauna (Insecta: Hymenoptera: Apoidea), with examples from Colombia. Entomol Abh 62:65–75Google Scholar
  29. González VH, Ospina M, Bennett DJ (2005) Abejas altoandinas de Colombia: Guía de campoGoogle Scholar
  30. Grau R, Kuemmerle T, Macchi L (2013) Beyond ‘land sparing versus land sharing’: environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Curr Opin Environ Sustain 5:477–483CrossRefGoogle Scholar
  31. Green RE, Cornell SJ, Scharlemann JP, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555. CrossRefGoogle Scholar
  32. Gutiérrez-Chacón C, Dormann CF, Klein A-M (2018) Forest-edge associated bees benefit from the proportion of tropical forest regardless of its edge length. Biol Conserv 220:149–160CrossRefGoogle Scholar
  33. Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513CrossRefGoogle Scholar
  34. Hoehn P, Tscharntke T, Tylianakis JM, Steffan-Dewenter I (2008) Functional group diversity of bee pollinators increases crop yield. Proc Biol Sci 275:2283–2291 CrossRefGoogle Scholar
  35. Holt JS (1995) Plant responses to light: a potential tool for weed management. Weed Sci 43:474–482Google Scholar
  36. Holzschuh A, Steffan-Dewenter I, Tscharntke T (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361CrossRefGoogle Scholar
  37. Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2011) Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc R Soc B 278:3444–3451CrossRefGoogle Scholar
  38. Hopfenmuller S, Steffan-Dewenter I, Holzschuh A (2014) Trait-specific responses of wild bee communities to landscape composition, configuration and local factors. PLoS ONE 9:e104439. CrossRefGoogle Scholar
  39. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456. CrossRefGoogle Scholar
  40. Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249CrossRefGoogle Scholar
  41. Jha S, Vandermeer JH (2009) Contrasting bee foraging in response to resource scale and local habitat management. Oikos 118:1174–1180. CrossRefGoogle Scholar
  42. Jha S, Vandermeer JH (2010) Impacts of coffee agroforestry management on tropical bee communities. Biol Conserv 143:1423–1431. CrossRefGoogle Scholar
  43. Jost L (2010) The relations between Evenness and Diversity. Diversity 2:207–232CrossRefGoogle Scholar
  44. Kennedy CM et al (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599. CrossRefGoogle Scholar
  45. Klein A-M (2009) Nearby rainforest promotes coffee pollination by increasing spatio-temporal stability in bee species richness. For Ecol Manage 258:1838–1845. CrossRefGoogle Scholar
  46. Klein A-M, Steffan-Dewenter I, Buchori D, Tscharntke T (2002) Effects of land-Use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps. Conserv Biol 16:1003–1014CrossRefGoogle Scholar
  47. Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Pollination of Coffea canephora in relation to local and regional agroforestry management. J Appl Ecol 40:837–845CrossRefGoogle Scholar
  48. Kohler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341:759–765CrossRefGoogle Scholar
  49. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816. CrossRefGoogle Scholar
  50. Kremen C, Williams NM, Bugg RL, Fay JP, Thorp RW (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol Lett 7:1109–1119CrossRefGoogle Scholar
  51. Lambin EF et al. (2013) Estimating the world’s potentially available cropland using a bottom-up approach. Glob Environ Change 23:892–901CrossRefGoogle Scholar
  52. Larsen TH, Escobar F, Armbrecht I (2018) Insects of the tropical Andes: diversity patterns, processes and global change. In: Sebastian K, Herzog RM, Peter M, Jørgensen H, Tiessen (eds) Climate change and biodiversity in the Tropical Andes. Inter-American Institute of Global Change Research and Scientific Committee on Problems of the Environment, Paris, pp 228–244Google Scholar
  53. Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116. CrossRefGoogle Scholar
  54. Le Féon V, Burel F, Chifflet R, Henry M, Ricroch A, Vaissière BE, Baudry J (2013) Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric Ecosyst Environ 166:94–101. CrossRefGoogle Scholar
  55. Magrach A, González-Varo JP, Boiffier M, Vilà M, Bartomeus I (2017) Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat Ecol Evol 1:1299–1307. CrossRefGoogle Scholar
  56. Mandelik Y, Winfree R, Neeson T, Kremen C (2012) Complementary habitat use by wild bees in agro-natural landscapes. Ecol Appl 22:1535–1546CrossRefGoogle Scholar
  57. Molau U (2004) Mountain biodiversity patterns at low and high latitudes. Ambio 13:24–28Google Scholar
  58. Marcon E, Hérault B (2015) Entropart: an R package to measure and partition diversity. J Stat Softw 67:26. Google Scholar
  59. Martins D (2013) People, plants and pollinators: uniting conservation, food security, and sustainable agriculture in East Africa. In: Sodhi NS, Gibson L, Raven PH (eds) Conservation biology: voices from the tropics. Wiley, HokobenGoogle Scholar
  60. McCoy ED (1990) The distribution of insects along elevational gradients. Oikos 58:313–322. CrossRefGoogle Scholar
  61. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. CrossRefGoogle Scholar
  62. Meyfroidt P, Rudel TK, Lambin EF (2010) Forest transitions, trade, and the global displacement of land use. Proc Natl Acad Sci USA 107:20917–20922. CrossRefGoogle Scholar
  63. Michener CD (2000) The bees of the world, vol 1. JHU Press, BaltimoreGoogle Scholar
  64. Mogren CL, Rand TA, Fausti SW, Lundgren JG (2016) The effects of crop intensification on the diversity of native pollinator. Commun Environ Entomol 45:865–872. CrossRefGoogle Scholar
  65. Montero-Castaño A, Ortiz-Sánchez FJ, Vilà M (2016) Mass flowering crops in a patchy agricultural landscape can reduce bee abundance in adjacent shrublands. Agric Ecosyst Environ 223:22–30. CrossRefGoogle Scholar
  66. Motzke I, Klein A-M, Saleh S, Wanger TC, Tscharntke T (2016) Habitat management on multiple spatial scales can enhance bee pollination and crop yield in tropical homegardens. Agric Ecosyst Environ 223:144–151. CrossRefGoogle Scholar
  67. Moure J (2008) Moure’s bee catalogueGoogle Scholar
  68. Nates-Parra G (2001) Las abejas sin aguijón (Hymenoptera: Apidae: Meliponini) de Colombia Biota Colombiana 2Google Scholar
  69. Nates-Parra G (2016) Iniciativa Colombiana de Polinizadores—Capítulo abejas. Universidad Nacional de Colombia, Bogotá, ColombiaGoogle Scholar
  70. Nicholls CI, Altieri MA (2012) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain Dev 33:257–274CrossRefGoogle Scholar
  71. Nieh J, Kruizinga K, Barreto L, Contrera F, Imperatriz-Fonseca V (2005) Effect of group size on the aggression strategy of an extirpating stingless bee, Trigona spinipes. Insectes Soc 52:147–154CrossRefGoogle Scholar
  72. Olden JD, LeRoy Poff N, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24. CrossRefGoogle Scholar
  73. Parra GN, Palacios E, Parra A (2007) Efecto del cambio del paisaje en la estructura de la comunidad de abejas sin aguijón (Hymenoptera: Apidae) en meta, Colombia. Rev Biol Trop 56:1295–1308Google Scholar
  74. Plascencia M, Philpott SM (2017) Floral abundance, richness, and spatial distribution drive urban garden bee communities. Bull Entomol Res 107:658–667CrossRefGoogle Scholar
  75. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. CrossRefGoogle Scholar
  76. Quistberg RD, Bichier P, Philpott SM (2016) Landscape and local correlates of bee abundance and species richness in urban gardens. Environ Entomol 45:592–601. CrossRefGoogle Scholar
  77. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  78. Rader R et al (2009) Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. J Appl Ecol 46:1080–1087CrossRefGoogle Scholar
  79. Rader R, Bartomeus I, Tylianakis JM, Laliberté E (2014) The winners and losers of land use intensification: pollinator community disassembly is non-random and alters functional diversity. Divers Distrib 20:908–917. CrossRefGoogle Scholar
  80. Rahbek C (2004) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239. CrossRefGoogle Scholar
  81. Rasmann S, Alvarez N, Pellissier L (2014) The Altitudinal niche-breadth hypothesis in insect–plant interactions. In: Annual plant reviews. Wiley, Hoboken, pp 339–359. CrossRefGoogle Scholar
  82. Requier F et al (2018) Trends in beekeeping and honey bee colony losses in Latin America. J Apic Res. Google Scholar
  83. Rosso-Londoño JM (2008) Diagnostico para el aprovechamiento y manejo integrado de abejas silvestres en agroecosistemas Andinos en el Valle del Cauca. Universidad Nacional de Colombia, BogotáGoogle Scholar
  84. Roubik DW (1995) Pollination of cultivated plants in the tropics. FAO, RomeGoogle Scholar
  85. Roubik D (2006) Stingless bee nesting biology. Apidologie 37:124–143. CrossRefGoogle Scholar
  86. Smith TISMV (1972) The influence of light intensity and temperature on the activity of the alfalfa leaf-cutter bee megachile rotundata under field conditions. J Apic Res 11:157–165. CrossRefGoogle Scholar
  87. Smith-Pardo A, Gonzalez VH (2007) Diversidad de abejas (Hymenoptera: Apoidea) en estados sucesionales del bosque húmedo tropical. Acta Biol Colomb 12:43Google Scholar
  88. Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432CrossRefGoogle Scholar
  89. Suding KN et al (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Change Biol 14:1125–1140. CrossRefGoogle Scholar
  90. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264CrossRefGoogle Scholar
  91. Tomé HVV et al (2017) Agrochemical synergism imposes higher risk to neotropical bees than to honeybees. R Soc Open Sci. Google Scholar
  92. Torné-Noguera A, Rodrigo A, Arnan X, Osorio S, Barril-Graells H, da Rocha-Filho LC, Bosch J (2014) Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. PLoS ONE 9:e97255. CrossRefGoogle Scholar
  93. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity a ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  94. Tscharntke T et al (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685CrossRefGoogle Scholar
  95. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363. CrossRefGoogle Scholar
  96. Ulyshen M, Soon V, Hanula J (2010) On the vertical distribution of bees in a temperate deciduous forest. Insect Conserv Divers 3:222–228CrossRefGoogle Scholar
  97. van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, Bonmatin J-M, Belzunces LP (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5:293–305CrossRefGoogle Scholar
  98. Veddeler D, Klein A-M, Tscharntke T (2006) Contrasting responses of bee communities to coffee flowering at different spatial scales. Oikos 112:594–601CrossRefGoogle Scholar
  99. Wcislo WT, Gonzalez VH, Engel MS (2003) Nesting and social behavior of a wood-dwelling neotropical bee, Augochlora isthmii (Schwarz), and notes on a new species, A. alexanderi Engel (Hymenoptera: Halictidae). J Kansas Entomol Soc 76:588–602Google Scholar
  100. Williams NM, Crone EE, Roulston TaH, Minckley RL, Packer L, Potts SG (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291. CrossRefGoogle Scholar
  101. Wilms W, Imperatriz-Fonseca V, Engels W (1996) Resource partitioning between highly eusocial bees and possible impact of the introduced Africanized honey bee on native stingless bees in the Brazilian atlantic rainforest. Stud Neotrop Fauna Environ 31:137–151. CrossRefGoogle Scholar
  102. Zavaleta E, Pasari J, Moore J, Hernández D, Suttle KB, Wilmers CC (2009) Ecosystem responses to community disassembly. Ann N Y Acad Sci 1162:311–333. CrossRefGoogle Scholar
  103. Zillikens A, Steiner J, Mihalkó Z (2001) Nests of Augochlora (A.) esox in Bromeliads, a Previously unknown site for sweat bees (Hymenoptera: Halictidae). Stud Neotrop Fauna Environ 36:137–142. CrossRefGoogle Scholar
  104. Zhang K, Lin S, Ji Y, Yang C, Wang X, Yang C, Wang H, Jiang H, Harrison RD, Yu DW (2016) Plant diversity accurately predicts insect diversity in two tropical landscapes. Mol Ecol 25:4407–4419CrossRefGoogle Scholar
  105. Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental StudiesUniversity of California, Santa CruzSanta CruzUSA

Personalised recommendations