Advertisement

Introducing time-lapse cameras in combination with dataloggers as a new method for the field study of caterpillars and microclimate

Abstract

We used time-lapse cameras, in combination with dataloggers for microclimate (air humidity and temperature), in an insect field study to analyse behaviour of caterpillars over several larval stages and determine mortality reasons in relation to microclimate. We studied caterpillars of instar 1–3 of the Moorland Clouded Yellow (Colias palaeno, Linnaeus, 1761), that is from hatching from the egg until hibernation. The observation by time-lapse cameras enabled us to gather data on several caterpillars simultaneously over longer time periods. Especially, the combination with dataloggers collecting microclimatic data gives interesting insights in the life, mortality causes and behaviour of the observed caterpillars in relation to microclimatic conditions. To our knowledge, time-lapse or automatic cameras combined with dataloggers collecting microclimatic data have not been used in field studies on phytophagous insects, but only in defined experimental settings or to observe pollinators visiting flowers. Therefore, we summarize our experiences on opportunities and limitations in this communication. If the observed insect is not moving too far and is most of the time visible on the upper surface of the leaf this method can be used for several research questions under very different conditions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1

References

  1. Aguayo DD, Mendoza Santoyo F, De la Torre I, Manuel H, Salas-Araiza MD, Caloca-Mendez C, Hernandez DAG (2010) Insect wing deformation measurements using high speed digital holographic interferometry. Optics Express 18(6):5661–5667

  2. Anwander H, Dolek M, Scherzinger C (2013) Hochmoor-Gelbling Colias palaeno (Linnaeus, 1761). In: Bräu M, Bolz R, Kolbeck H, Nunner A, Voith J, Wolf W (eds) Tagfalter in Bayern. Eugen Ulmer, Stuttgart, pp 164–167

  3. Čelik T, Bräu M, Bonelli S, Cerrato C, Vreš B, Balletto E, Stettmer C, Dolek M (2015) Winter-green host-plants, litter quantity and vegetation structure are key determinants of habitat quality for Coenonympha oedippus in Europe. J Insect Conserv 19(2):359–375

  4. Dodge WE, Snyder DP (1960) An automatic camera device for recording wildlife activity. J Wildl Manag 24:340–342

  5. Dolek M, Freese-Hager A (2011) Ursachenanalyse zum Rückgang des Hochmoorgelblings (Colias palaeno) in Bayern. Report, Bayerische Akademie für Naturschutz und Landschaftspflege, Laufen/Salzach

  6. Dolek M, Freese-Hager A, Geyer A, Balletto E, Bonelli S (2013) Multiple oviposition and larval feeding strategies in Euphydryas maturna (Linné, 1758, Nymphalidae) at two disjoint European sites. J Insect Conserv 17(2):357–366

  7. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 1 & 2 Tagfalter I & II. Eugen Ulmer, Stuttgart

  8. Edwards J, Smith GP, McEntee MHF (2015) Long-term time-lapse video provides near complete records of floral visitation. J Pollinat Ecol 16(13):91–100

  9. Eilers S, Pettersson LB, Öckinger E (2013) Micro-climate determines oviposition site selection and abundance in the butterfly Pyrgus armoricanus at its northern range margin. Ecol Entomol 38(2):183–192

  10. Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa: - von den Anfängen bis heute. Kettler, Münster

  11. Freese A, Benes J, Bolz R, Cizek O, Dolek M, Geyer A, Gros P, Konvicka M, Liegl A, Stettmer C (2006) Habitat use of the endangered butterfly Euphydryas maturna and forestry in Central Europe. Animal Conserv 9(4):388–397

  12. Fry SN, Bichsel M, Müller P, Robert D (2000) Tracking of flying insects using pan-tilt cameras. J Neurosci Methods 101(1):59–67. doi:10.1016/S0165-0270(00)00253-3

  13. Higgins LG, Riley ND (1978) Die Tagfalter Europas und Nordwestafrikas. Parey, Hamburg

  14. Holden J, Yanuar A & Martyr DJ (2003) The Asian Tapir in Kerinci Seblat National Park, Sumatra: evidence collected through photo-trapping. Oryx. doi:10.1017/S0030605303000097

  15. Höttinger H (2004) Grundlagen zum Schutz von Tagschmetterlingen in Städten. Oedippus 22:1–48

  16. Lowenstein DM, Gharehaghaji M, Wise DH (2017) Substantial mortality of Cabbage Looper (Lepidoptera: Noctuidae) from predators in urban agriculture is not Influenced by scale of production or variation in local and landscape-level factors. Environ Entomol 46(1):30–37

  17. Maey H (1986) Der Hochmoorgelbling Colias palaeno Linnaeus 1761 und seine Unterarten. Löbbecke-Museum, Düsseldorf

  18. McGimpsey VJ, Lord JM (2015) In a world of white, flower colour matters: a white-purple transition signals lack of reward in an alpine Euphrasia. Austral Ecol 40(6):701–708

  19. Merfield CN, Wratten SD, Navntoft S (2004) Video analysis of predation by polyphagous invertebrate predators in the laboratory and field. Biol Control 29(1):5–13

  20. Meyhöfer R (2001) Intraguild predation by aphidophagous predators on parasitised aphids: the use of multiple video cameras. Entomologia Exp et Appl 100(1):77–87

  21. Myers JH (1988) Can a general hypothesis explain population cycles of forest Lepidoptera? Adv Ecol Res 18:179–242

  22. Noldus LP, Spink AJ & Tegelenbosch RAJ (2002) Computerised video tracking, movement analysis and behaviour recognition in insects. Comput Electron Agric 35(2):201–227

  23. Radchuk V, Turlure C, Schtickzelle N (2013) Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J Anim Ecol 82(1):275–285

  24. Rovero F, Zimmermann F, Berzi D, Meek P (2013) “Which camera trap type and how many do I need?” A review of camera features and study designs for a range of wildlife research applications. Hystrix 24(2):148–156

  25. Schenk D, Bacher S (2002) Functional response of a generalist insect predator to one of its prey species in the field. J Anim Ecol 71(3):524–531

  26. Schmitt C, Rack A, Betz O (2014) Analyses of the mouthpart kinematics in Periplaneta americana (Blattodea, Blattidae) using synchrotron-based X-ray cineradiography. J Exp Biol 217(17):3095–3107

  27. Settele J, Kudrna O, Harpke A, Kühn I, van Swaay C, Verovnik R, Warren MS, Wiemers M, Hanspach J, Hickler T (2008) Climatic risk atlas of European butterflies. Pensoft, Sofia

  28. Siuda C (2002) Erstellung von Umsetzungskonzepten der Moorrenaturierung im Rahmen des Moorentwicklungskonzepts Bayern: Umsetzungskonzept Weihermoos, Landkreis Ostallgäu. Bayerisches Landesamt für Umwelt, Augsburg

  29. Steen R (2017) Diel activity, frequency and visit duration of pollinators in focal plants: in situ automatic camera monitoring and data processing. Methods Ecol Evol 8(2):203–213

  30. Suetsugu K, Hayamizu M (2014) Moth floral visitors of the three rewarding Platanthera orchids revealed by interval photography with a digital camera. J Nat Hist 48(17–18):1103–1109

  31. Tolman T, Lewington R (2008) Collins butterfly guide: the most complete field guide to the butterflies of Britain and Europe. HarperCollins, Glasgow

  32. Turlure C, Choutt J, Baguette M & van Dyck H (2010) Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Global Change Biol 16(6):1883–1893

  33. van Swaay C, Collins S, Dušej G, Maes D, Munguira ML, Rakosy L, Ryrholm N, Šašić M, Settele J, Thomas J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhoff I (2012) Dos and Don’ts for butterflies of the Habitats Directive of the European Union. Nature Conserv 1:73–153

  34. Voith J, Bräu M, Dolek M, Nunner A & Wolf W (2016) Rote Liste und Gesamtartenliste der Tagfalter (Lepidoptera: Rhopalocera) Bayerns. Bayerisches Landesamt für Umwelt (LfU), Augsburg. https://www.lfu.bayern.de/natur/rote_liste_tiere/2016/doc/tagfalter_infoblatt.pdf. Accessed 14 May 2017

  35. Vrba P, Dolek M, Nedvěd O, Zahradníčková H, Cerrato C, Konvička M (2014) Overwintering of the boreal butterfly Colias palaeno in Central Europe. CryoLetters 35(3):247–254

  36. Weidemann H-J (1989) Anmerkungen zur aktuellen Situation von Hochmoor-Gelbling (Colias palaeno L. 1758) und Regensburger Gelbling (Colias myrmidone Esper 1781) in Bayern mit Hinweisen zur Biotop-Pflege. Schriftenreihe des Bayerischen Landesamtes für Umweltschutz 95:103–115

  37. Wellington WG (1957) Individual differences as a factor in population dynamics: the development of a problem. Can J Zool 35(3):293–323

Download references

Acknowledgements

The study was supported by the Bavarian Academy of Nature Conservation and Landscape management (ANL) and it is part of the ANL research project “Development of management strategies for habitats and species of the annexes of the Habitats Directive: Analysis of the reasons for the large-scale decline of C. palaeno”.

Author information

Correspondence to Matthias Dolek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM4: Video example, cut from a longer sequence: The caterpillar (No. 88) on a sunny day moving, resting, and feeding (17.08.2014). After the night, the camera lens is fogged (no observation possible), later, dew-fall is visible on the leaves. The caterpillar is resting a long time and then starts to move and feed. In the evening, it starts to rain. (Note: camera time is 2 hours and 33 minutes ahead of CEST). Supplementary material 1 (MP4 0 kb)

MOESM1: For each of the three behavioural categories we present one detail out of one picture of the original time-lapse pictures. Therefore, picture quality and file size are low. 1a: Feeding: Fresh green leaf parts appear, where the caterpillar removed the upper layer of the leaf. Supplementary material 1 (JPG 32 kb)

MOESM2: 1b: Moving: The caterpillar is turning around and moving back from feeding to resting position. Supplementary material 1 (JPG 22 kb)

MOESM3: 1c: Resting: The cat-erpillar is sitting in its typical resting position at the base of the leaf, head downwards. Supplementary material 1 (JPG 20 kb)

MOESM4: Video example, cut from a longer sequence: The caterpillar (No. 88) on a sunny day moving, resting, and feeding (17.08.2014). After the night, the camera lens is fogged (no observation possible), later, dew-fall is visible on the leaves. The caterpillar is resting a long time and then starts to move and feed. In the evening, it starts to rain. (Note: camera time is 2 hours and 33 minutes ahead of CEST). Supplementary material 1 (MP4 0 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dolek, M., Georgi, M. Introducing time-lapse cameras in combination with dataloggers as a new method for the field study of caterpillars and microclimate. J Insect Conserv 21, 573–579 (2017). https://doi.org/10.1007/s10841-017-9996-9

Download citation

Keywords

  • Butterfly
  • Microclimate
  • Caterpillar
  • Behaviour
  • Colias palaeno