Skip to main content

Advertisement

Log in

Effects of fragmentation and anthropic pressure on the genetic structure of Canthon (Peltecanthon) staigi (Coleoptera: Scarabaeidae) populations in the Atlantic Forest domain

  • Original Paper
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Canthon (Peltecanthon) staigi is an endemic dung beetle from the east coast of South America (Brazil, Paraguay and Argentina). It is a stenotopic species abundant in different habitats of the Atlantic Forest. In this study, we analyzed the influence of fragmentation and environmental changes on the population genetic structure of C. (P.) staigi using inter-simple sequence repeat polymorphisms, and the consequences for management and conservation. The expected heterozygosity (HE) ranged from 0.16 (restinga, TAM population) in the smallest and most disturbed forest patch to 0.24 (“brejo de altitude”, PES population) in the largest and most conserved area. Based on the low coefficient of genetic population differentiation (F ST  = 0.07) and large molecular variance within populations, we suggest historical gene flow among C. (P.) staigi populations. Additionally, the model ƒ = 0, which corresponds to a lack of or very low inbreeding rate, is another factor that indicates gene flow among populations. Two genetic traits (K = 2) were related with anthropic disturbance, suggesting that the six studied populations are genetically divided into two separate units, one related to preserved and another to disturbed areas. Based on these data, the recent habitat fragmentation may not have led to genetic differentiation, but rather the environmental modifications caused by anthropic pressure seem to be strongly related to the loss of genetic diversity in the species C. (P.) staigi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arellano L, León-Cortés JL, Ovaskainen O (2008) Patterns of abundance and movement in relation to landscape structure: a study of a common scarab (Canthon cyanellus cyanellus) in Southern Mexico. Landsc Ecol 23:69–78. doi:10.1007/s10980-007-9165-8

    Article  Google Scholar 

  • Chen F, Shi J, Luo Y, Sun S, Pu M (2013) Genetic characterization of the gypsy moth from China (Lepidoptera, Lymantriidae) using inter simple sequence repeats markers. PLoS ONE 8(8):e73017. doi:10.1371/journal.pone.0073017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30:71–86

    Article  Google Scholar 

  • Costa FC, Pessoa KKT, Liberal CN, Filgueiras BKC, Salomão RP, Iannuzzi L (2013) What is the importance of open habitat in a predominantly closed forest area to the dung beetle (Coleoptera, Scarabaeinae) assemblage? Rev Bras Entomol 57(3):329–334. doi:10.1590/S0085-56262013000300012

    Article  Google Scholar 

  • Costa CMQ, Barretto JW, Moura RC (2014) Changes in the dung beetle community in response to restinga forest degradation. J Insect Conserv 18:895–902

    Article  Google Scholar 

  • Endres AA, Creão-Duarte AJ, Hernández MIM (2007) Diversidade de Scarabaeidae s. str. (Coleoptera) da Reserva Biológica Guaribas, Mamanguape, Paraíba, Brasil: uma comparação entre Mata Atlântica e Tabuleiro Nordestino. Rev Bras Entomol 51:67–71

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lisher HEL (2010) ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515

    Article  Google Scholar 

  • Filgueiras BKC, Iannuzzi L, Leal IR (2011) Habitat fragmentation alters the structure of dung beetle communities in the Atlantic Forest. Biol Conserv 144:362–369. doi:10.1016/j.biocon.2010.09.013

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2008) Fundamentos de genética da conservação. SBG, Ribeirão Preto

    Google Scholar 

  • Gardner TA, Hernández MIM, Barlow J, Peres CA (2008) Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. J Appl Ecol 45:883–893. doi:10.1111/j.1365-2664.2008.01454.x

    Article  Google Scholar 

  • Gaublomme E, Maebe K, Doninck KV, Dhuyvetter H, Li X, Desender K, Hendrickx F (2013) Loss of genetic diversity and increased genetic structuring in response to forest area reduction in a ground dwelling insect: a case study of the flightless carabid beetle Carabus problematicus (Coleoptera, Carabidae). Insect Conserv Divers 6:473–482

    Article  Google Scholar 

  • Halffter G, Martínez A (1967) Revisión monográfica de los Canthonina americanos (2ª parte). Rev Soc Mex Hist Nat 28:79–116

    Google Scholar 

  • Hernández MIM, Barreto PSCS, Valderêz HC, Creão-Duarte AJ, Favila ME (2014) Response of a dung beetle assemblage along a reforestation gradient in Restinga forest. J Insect Conserv 18:539–546. doi:10.1007/s10841-014-9645-5

    Article  Google Scholar 

  • Hill JK, Hughes CL, Dytham C, Searle JB (2006) Genetic diversity in butterflies: interactive effects of habitat fragmentation and climate-driven range expansion. Biol Lett 2:152–154

    Article  CAS  PubMed  Google Scholar 

  • Holland BR, Clarke AC, Meudt HM (2008) Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst Biol 57:347–366. doi:10.1080/10635150802044037

    Article  PubMed  Google Scholar 

  • Holsinger KE, Lewis PO, Dey DK (2002) A Bayesian method for analysis of genetic population structure with dominant marker data. Mol Ecol 11:1157–1164. doi:10.1046/j.1365-294X.2002.01512

    Article  CAS  PubMed  Google Scholar 

  • Hunter MD (2002) Landscape structure, habitat fragmentation, and the ecology of insects. Agric For Entomol 4:159–166

    Article  Google Scholar 

  • Hurt C, Hedrick P (2004) Conservation genetics in aquatic species: general approaches and case studies in fishes and springsnails of arid lands. Aquat Sci 66:402–413

    Article  Google Scholar 

  • Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. N Phytol 204:459–473

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064

    Article  Google Scholar 

  • Knutsen H, Rukke BA, Jorde PE, Ims RA (2000) Genetic differentiation among populations of the beetle Bolitophagus reticulatus (Coleoptera: Tenebrionidae) in a fragmented and a continuous landscape. Heredity 84:667–676

    Article  CAS  PubMed  Google Scholar 

  • Krauss J, Schmitt T, Seitz A, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polyommatus coridon along its northern range margin. Mol Ecol 13:311–320

    Article  PubMed  Google Scholar 

  • Larsen TH, Lopera A, Forsyth A (2008) Understanding trait-dependent community disassembly: dung beetles, density functions, and forest fragmentation. Conserv Biol 22:1288–1298

    Article  PubMed  Google Scholar 

  • Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108

    Article  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Liu J, Gui F, Li Z (2010) Genetic diversity of the planthopper, Sogatella furcifera in the Greater Mekong Subregion detected by inter-simple sequence repeats (ISSR) markers. J Insect Sci 10:52. doi:10.1673/031.010.5201

    PubMed  PubMed Central  Google Scholar 

  • Lopez B, Favela S, Ponce G, Foroughbakhch R, Flores AE (2013) Genetic variation in Bactericera cockerelli (Hemiptera: Triozidae) from Mexico. J Econ Entomol 106(2):1004–1010

    Article  PubMed  Google Scholar 

  • Machkour-M’Rabet S, Leberger R, León-Cortés JL, Gers C, Legal L (2014) Population structure and genetic diversity of the only extant Baroninae swallowtail butterfly, Baronia brevicornis, revealed by ISSR markers. J Insect Conserv 18:385–396. doi:10.1007/s10841-014-9647-3

    Article  Google Scholar 

  • Manrique-Poyato MI, López-León MD, Gómez R, Perfectti F, Camacho JPM (2013) Population genetic structure of the grasshopper Eyprepocnemis plorans in the south and east of the Iberian Peninsula. PLoS ONE 8:1–8. doi:10.1371/journal.pone.0059041

    Google Scholar 

  • McGeoch MA, Rensburg BJV, Botes A (2002) The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. J Appl Ecol 39:661–672. doi:10.1046/j.1365-2664.2002.00743.x

    Article  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. doi:10.1111/j.1471-8286.2004.00770.x

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX V6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pereira FSCMS, Martines A (1956) Os gêneros de Canthonini Americanos (col. Scarabaeidae). Rev Bras Entomol 6:91–192

    Google Scholar 

  • Perovano TL, Lima RN (2003) Dinâmica de ocupação do solo na faixa de Reserva Ecológica de Vila Velha (ES). Nat Online 1:17–23

    Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprint of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roldán-Ruiz I, Dendauw J, Van BE, Depicker A, De Loose M (2000) AFLP markers reveals high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York, p 813–819

    Google Scholar 

  • Souza GA, Carvalho MRO, Martins ER, Guedes RNC, Oliveira LO (2008) Diversidade genética estimada com marcadores ISSR em populações brasileiras de Zabrotes subfasciatus. Pesqui Agropecu Bras 43:843–849

    Article  Google Scholar 

  • Spector S, Ayzama S (2003) Rapid turnover and edge effects in dung beetle assemblages (Scarabaeidae) at a Bolivian neotropical forest-savanna ecotone. Biotropica 35:394–404. doi:10.1111/j.1744-7429.2003.tb00593.x

    Google Scholar 

  • Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP marker for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649. doi:10.1016/j.plantsci.2007.08.010

    Article  CAS  Google Scholar 

  • Vaz-de-Mello FZ (1999) Scarabaeidae s. str. (Coleoptera: Scarabaeoidea) de um fragmento de floresta amazônica no estado do Acre, Brasil: Taxocenose. An Soc Entomol Bras 28:447–453

    Article  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evol Int J Org Evol 19:395–420

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to MSc Cristiane Maria Queiroz da Costa and Prof. Dr. Fernando Silva for the collection and identification of specimens. This study was supported by a Grant from the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE-IBPG-0831-2.02/11) through a Doctorate Scholarship to C.A.F.N., a Post-doc Researcher Fellowship to G.A.S.C. from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD-20130558) and FACEPE-BCT-0063-2.02/14, and by funding from the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) to R.C.M. (CNPQ- 305298/2014-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita de Cássia de Moura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 Ancestry of each individual in either of the four groups plotted by the software Structure version 2.3.4 by means of six ISSR markers with 295 amplified bands in Canthon (P.) staigi. Each vertical bar represents 1 of 180 individuals and the population of origin is cited below. Bar length is proportional to the ancestry values inferred in each group for each individual

Supplementary material 1 (DOCX 11 KB)

Supplementary material 2 (DOCX 66 KB)

Supplementary material 3 (JPG 83 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira-Neto, C.A., dos Santos Cruz, G.A., de Amorim, I.C. et al. Effects of fragmentation and anthropic pressure on the genetic structure of Canthon (Peltecanthon) staigi (Coleoptera: Scarabaeidae) populations in the Atlantic Forest domain. J Insect Conserv 21, 267–276 (2017). https://doi.org/10.1007/s10841-017-9980-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-017-9980-4

Keywords

Navigation