Journal of Insect Conservation

, Volume 21, Issue 2, pp 267–276 | Cite as

Effects of fragmentation and anthropic pressure on the genetic structure of Canthon (Peltecanthon) staigi (Coleoptera: Scarabaeidae) populations in the Atlantic Forest domain

  • Celso Alexandre Ferreira-Neto
  • Geyner Alves dos Santos Cruz
  • Igor Costa de Amorim
  • Valdir Queiroz Balbino
  • Rita de Cássia de MouraEmail author
Original Paper


Canthon (Peltecanthon) staigi is an endemic dung beetle from the east coast of South America (Brazil, Paraguay and Argentina). It is a stenotopic species abundant in different habitats of the Atlantic Forest. In this study, we analyzed the influence of fragmentation and environmental changes on the population genetic structure of C. (P.) staigi using inter-simple sequence repeat polymorphisms, and the consequences for management and conservation. The expected heterozygosity (HE) ranged from 0.16 (restinga, TAM population) in the smallest and most disturbed forest patch to 0.24 (“brejo de altitude”, PES population) in the largest and most conserved area. Based on the low coefficient of genetic population differentiation (F ST  = 0.07) and large molecular variance within populations, we suggest historical gene flow among C. (P.) staigi populations. Additionally, the model ƒ = 0, which corresponds to a lack of or very low inbreeding rate, is another factor that indicates gene flow among populations. Two genetic traits (K = 2) were related with anthropic disturbance, suggesting that the six studied populations are genetically divided into two separate units, one related to preserved and another to disturbed areas. Based on these data, the recent habitat fragmentation may not have led to genetic differentiation, but rather the environmental modifications caused by anthropic pressure seem to be strongly related to the loss of genetic diversity in the species C. (P.) staigi.


ISSR Genetic diversity Scarabaeinae Dung beetles 



We are grateful to MSc Cristiane Maria Queiroz da Costa and Prof. Dr. Fernando Silva for the collection and identification of specimens. This study was supported by a Grant from the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE-IBPG-0831-2.02/11) through a Doctorate Scholarship to C.A.F.N., a Post-doc Researcher Fellowship to G.A.S.C. from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD-20130558) and FACEPE-BCT-0063-2.02/14, and by funding from the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) to R.C.M. (CNPQ- 305298/2014-3).

Supplementary material

10841_2017_9980_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 11 KB)
10841_2017_9980_MOESM2_ESM.docx (66 kb)
Supplementary material 2 (DOCX 66 KB)
10841_2017_9980_MOESM3_ESM.jpg (84 kb)
Supplementary material 3 (JPG 83 KB)


  1. Arellano L, León-Cortés JL, Ovaskainen O (2008) Patterns of abundance and movement in relation to landscape structure: a study of a common scarab (Canthon cyanellus cyanellus) in Southern Mexico. Landsc Ecol 23:69–78. doi: 10.1007/s10980-007-9165-8 CrossRefGoogle Scholar
  2. Chen F, Shi J, Luo Y, Sun S, Pu M (2013) Genetic characterization of the gypsy moth from China (Lepidoptera, Lymantriidae) using inter simple sequence repeats markers. PLoS ONE 8(8):e73017. doi: 10.1371/journal.pone.0073017 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Costa LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30:71–86CrossRefGoogle Scholar
  4. Costa FC, Pessoa KKT, Liberal CN, Filgueiras BKC, Salomão RP, Iannuzzi L (2013) What is the importance of open habitat in a predominantly closed forest area to the dung beetle (Coleoptera, Scarabaeinae) assemblage? Rev Bras Entomol 57(3):329–334. doi: 10.1590/S0085-56262013000300012 CrossRefGoogle Scholar
  5. Costa CMQ, Barretto JW, Moura RC (2014) Changes in the dung beetle community in response to restinga forest degradation. J Insect Conserv 18:895–902CrossRefGoogle Scholar
  6. Endres AA, Creão-Duarte AJ, Hernández MIM (2007) Diversidade de Scarabaeidae s. str. (Coleoptera) da Reserva Biológica Guaribas, Mamanguape, Paraíba, Brasil: uma comparação entre Mata Atlântica e Tabuleiro Nordestino. Rev Bras Entomol 51:67–71CrossRefGoogle Scholar
  7. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  8. Excoffier L, Lisher HEL (2010) ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  9. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515CrossRefGoogle Scholar
  10. Filgueiras BKC, Iannuzzi L, Leal IR (2011) Habitat fragmentation alters the structure of dung beetle communities in the Atlantic Forest. Biol Conserv 144:362–369. doi: 10.1016/j.biocon.2010.09.013 CrossRefGoogle Scholar
  11. Frankham R, Ballou JD, Briscoe DA (2008) Fundamentos de genética da conservação. SBG, Ribeirão PretoGoogle Scholar
  12. Gardner TA, Hernández MIM, Barlow J, Peres CA (2008) Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. J Appl Ecol 45:883–893. doi: 10.1111/j.1365-2664.2008.01454.x CrossRefGoogle Scholar
  13. Gaublomme E, Maebe K, Doninck KV, Dhuyvetter H, Li X, Desender K, Hendrickx F (2013) Loss of genetic diversity and increased genetic structuring in response to forest area reduction in a ground dwelling insect: a case study of the flightless carabid beetle Carabus problematicus (Coleoptera, Carabidae). Insect Conserv Divers 6:473–482CrossRefGoogle Scholar
  14. Halffter G, Martínez A (1967) Revisión monográfica de los Canthonina americanos (2ª parte). Rev Soc Mex Hist Nat 28:79–116Google Scholar
  15. Hernández MIM, Barreto PSCS, Valderêz HC, Creão-Duarte AJ, Favila ME (2014) Response of a dung beetle assemblage along a reforestation gradient in Restinga forest. J Insect Conserv 18:539–546. doi: 10.1007/s10841-014-9645-5 CrossRefGoogle Scholar
  16. Hill JK, Hughes CL, Dytham C, Searle JB (2006) Genetic diversity in butterflies: interactive effects of habitat fragmentation and climate-driven range expansion. Biol Lett 2:152–154CrossRefPubMedGoogle Scholar
  17. Holland BR, Clarke AC, Meudt HM (2008) Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst Biol 57:347–366. doi: 10.1080/10635150802044037 CrossRefPubMedGoogle Scholar
  18. Holsinger KE, Lewis PO, Dey DK (2002) A Bayesian method for analysis of genetic population structure with dominant marker data. Mol Ecol 11:1157–1164. doi: 10.1046/j.1365-294X.2002.01512 CrossRefPubMedGoogle Scholar
  19. Hunter MD (2002) Landscape structure, habitat fragmentation, and the ecology of insects. Agric For Entomol 4:159–166CrossRefGoogle Scholar
  20. Hurt C, Hedrick P (2004) Conservation genetics in aquatic species: general approaches and case studies in fishes and springsnails of arid lands. Aquat Sci 66:402–413CrossRefGoogle Scholar
  21. Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. N Phytol 204:459–473CrossRefGoogle Scholar
  22. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  23. Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064CrossRefGoogle Scholar
  24. Knutsen H, Rukke BA, Jorde PE, Ims RA (2000) Genetic differentiation among populations of the beetle Bolitophagus reticulatus (Coleoptera: Tenebrionidae) in a fragmented and a continuous landscape. Heredity 84:667–676CrossRefPubMedGoogle Scholar
  25. Krauss J, Schmitt T, Seitz A, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polyommatus coridon along its northern range margin. Mol Ecol 13:311–320CrossRefPubMedGoogle Scholar
  26. Larsen TH, Lopera A, Forsyth A (2008) Understanding trait-dependent community disassembly: dung beetles, density functions, and forest fragmentation. Conserv Biol 22:1288–1298CrossRefPubMedGoogle Scholar
  27. Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108CrossRefGoogle Scholar
  28. Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189CrossRefGoogle Scholar
  29. Liu J, Gui F, Li Z (2010) Genetic diversity of the planthopper, Sogatella furcifera in the Greater Mekong Subregion detected by inter-simple sequence repeats (ISSR) markers. J Insect Sci 10:52. doi: 10.1673/031.010.5201 PubMedPubMedCentralGoogle Scholar
  30. Lopez B, Favela S, Ponce G, Foroughbakhch R, Flores AE (2013) Genetic variation in Bactericera cockerelli (Hemiptera: Triozidae) from Mexico. J Econ Entomol 106(2):1004–1010CrossRefPubMedGoogle Scholar
  31. Machkour-M’Rabet S, Leberger R, León-Cortés JL, Gers C, Legal L (2014) Population structure and genetic diversity of the only extant Baroninae swallowtail butterfly, Baronia brevicornis, revealed by ISSR markers. J Insect Conserv 18:385–396. doi: 10.1007/s10841-014-9647-3 CrossRefGoogle Scholar
  32. Manrique-Poyato MI, López-León MD, Gómez R, Perfectti F, Camacho JPM (2013) Population genetic structure of the grasshopper Eyprepocnemis plorans in the south and east of the Iberian Peninsula. PLoS ONE 8:1–8. doi: 10.1371/journal.pone.0059041 Google Scholar
  33. McGeoch MA, Rensburg BJV, Botes A (2002) The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. J Appl Ecol 39:661–672. doi: 10.1046/j.1365-2664.2002.00743.x CrossRefGoogle Scholar
  34. Meirmans PG, Van Tienderen PH (2004) Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. doi: 10.1111/j.1471-8286.2004.00770.x CrossRefGoogle Scholar
  35. Peakall R, Smouse PE (2006) GENALEX V6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  36. Pereira FSCMS, Martines A (1956) Os gêneros de Canthonini Americanos (col. Scarabaeidae). Rev Bras Entomol 6:91–192Google Scholar
  37. Perovano TL, Lima RN (2003) Dinâmica de ocupação do solo na faixa de Reserva Ecológica de Vila Velha (ES). Nat Online 1:17–23Google Scholar
  38. Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprint of potato cultivars. Theor Appl Genet 98:107–112CrossRefGoogle Scholar
  39. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  40. Roldán-Ruiz I, Dendauw J, Van BE, Depicker A, De Loose M (2000) AFLP markers reveals high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134CrossRefGoogle Scholar
  41. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York, p 813–819Google Scholar
  42. Souza GA, Carvalho MRO, Martins ER, Guedes RNC, Oliveira LO (2008) Diversidade genética estimada com marcadores ISSR em populações brasileiras de Zabrotes subfasciatus. Pesqui Agropecu Bras 43:843–849CrossRefGoogle Scholar
  43. Spector S, Ayzama S (2003) Rapid turnover and edge effects in dung beetle assemblages (Scarabaeidae) at a Bolivian neotropical forest-savanna ecotone. Biotropica 35:394–404. doi: 10.1111/j.1744-7429.2003.tb00593.x Google Scholar
  44. Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP marker for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649. doi: 10.1016/j.plantsci.2007.08.010 CrossRefGoogle Scholar
  45. Vaz-de-Mello FZ (1999) Scarabaeidae s. str. (Coleoptera: Scarabaeoidea) de um fragmento de floresta amazônica no estado do Acre, Brasil: Taxocenose. An Soc Entomol Bras 28:447–453CrossRefGoogle Scholar
  46. Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evol Int J Org Evol 19:395–420CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Celso Alexandre Ferreira-Neto
    • 1
    • 2
  • Geyner Alves dos Santos Cruz
    • 1
  • Igor Costa de Amorim
    • 1
    • 2
  • Valdir Queiroz Balbino
    • 2
  • Rita de Cássia de Moura
    • 1
    Email author
  1. 1.Instituto de Ciências BiológicasUniversidade de PernambucoRecifeBrazil
  2. 2.Departamento de Genética, Centro de BiociênciasUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations