“Primeval forest relict beetles” of Central Europe: a set of 168 umbrella species for the protection of primeval forest remnants

  • Andreas Eckelt
  • Jörg Müller
  • Ulrich Bense
  • Hervé Brustel
  • Heinz Bußler
  • Yannick Chittaro
  • Lukas Cizek
  • Adrienne Frei
  • Erwin Holzer
  • Marcin Kadej
  • Manfred Kahlen
  • Frank Köhler
  • Georg Möller
  • Hans Mühle
  • Andreas Sanchez
  • Ulrich Schaffrath
  • Jürgen Schmidl
  • Adrian Smolis
  • Alexander Szallies
  • Tamás Németh
  • Claus Wurst
  • Simon Thorn
  • Rune Haubo Bojesen Christensen
  • Sebastian Seibold
ORIGINAL PAPER
  • 181 Downloads

Abstract

Identification of forest stands with priority for the conservation of biodiversity is of particular importance in landscapes with a long cultural and agricultural history, such as Central Europe. A group of species with a high indicator value for the naturalness of forest ecosystems are saproxylic insects. Some of these species, especially within the order Coleoptera, have been described as primeval forests relicts. Here, we compiled a list of 168 “primeval forest relict species” of saproxylic beetles based on expert knowledge. These species can serve as focal and umbrella species for forest conservation in Central Europe. They were selected because of their dependence on the continuous presence of primeval forest habitat features, such as over-mature trees, high amounts of dead wood, and dead wood diversity, as well as their absence in managed Central European forests. These primeval forest relict species showed a moderately strong clumping pattern within the phylogeny of beetles, as indicated by phylogenetic signal testing using the D-statistic. When we controlled for phylogenetic relatedness, an ordinal linear model revealed that large body size and preference for dead wood and trees of large diameter are the main characteristics of these species. This list of species can be used to identify forest stands of conservation value throughout Central Europe, to prioritize conservation and to raise public awareness for conservation issues related to primeval forests.

Keywords

Saproxylic beetles Old growth Primeval forest relicts Habitat continuity Megatree continuity Forest conservation Flagship species Umbrella species 

Notes

Acknowledgements

We thank Erich Mayrhofer, Erich Weigand and their team at the Kalkalpen National Park (Austria) for assistance during the workshop and financial support; Ottó Merkl (Budapest, HNHM) for advice on species selection; and Jerzy M. Gutowski, Lech Buchholtz, Andrzej Melke, Karol Komosiński (Poland), O. Konvička (Zlín), D. Hauck (Brno), P. Průdek (Brno), and J. Vávra (Ostrava) for advice on the distribution and status of several primeval forest relict species.

Supplementary material

10841_2017_28_MOESM1_ESM.doc (320 kb)
Supplementary material 1 (DOC 320 KB)
10841_2017_28_MOESM2_ESM.doc (150 kb)
Supplementary material 2 (DOC 150 KB)

References

  1. Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manag 258:525–537. doi: 10.1016/j.foreco.2009.01.053 CrossRefGoogle Scholar
  2. Bobiec A, Burt H, Meijr K et al (2000) Rich deciduous forest in Bialowieza as a dynamic mosaic of developmental phases: premises for nature conservation and restoration management. For Ecol Manag 130:159–175CrossRefGoogle Scholar
  3. Brustel H (2004) Coléoptères saproxyliques et valeur biologique des forêts françaises. Perspectives pour la conservation du patrimoine naturel. Les Dossiers For 13:297Google Scholar
  4. Buse J, Ranius T, Assmann T (2008) An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer. Conserv Biol 22:329–337. doi: 10.1111/j.1523-1739.2007.00880.x CrossRefPubMedGoogle Scholar
  5. Bußler H (2010) Hotspot-Gebiete xylobionter Urwaldreliktarten aus dem Reich der Käfer. LWF Aktuell 76:10–12Google Scholar
  6. Bußler H, Müller J (2006) Wir brauchen differenzierte Konzepte im Waldnaturschutz. AFZ-Der Wald 61:174–175Google Scholar
  7. Carpaneto GM, Mazziotta A, Coletti G et al (2010) Conflict between insect conservation and public safety: the case study of a saproxylic beetle (Osmoderma eremita) in urban parks. J Insect Conserv 14:555–565. doi: 10.1007/s10841-010-9283-5 CrossRefGoogle Scholar
  8. Cateau E, Larrieu L, Vallauri D et al (2015) Ancientness and maturity: two complementary qualities of forest ecosystems. C R Biol 338:58–73. doi: 10.1016/j.crvi.2014.10.004 CrossRefPubMedGoogle Scholar
  9. Christensen RH (2013) Ordinal—regression models for ordinal data. R package version 2013.9–30. http://www.cran.r-project.org/package=ordinal
  10. Christensen M, Hahn K, Mountford EP et al (2005) Dead wood in European beech (Fagus sylvatica) forest reserves. For Ecol Manag 210:267–282. doi: 10.1016/j.foreco.2005.02.032 CrossRefGoogle Scholar
  11. Chylarecki P, Selva N (2016) Ancient forest: spare it from clearance. Nature 530:419–419. doi: 10.1038/530419b CrossRefPubMedGoogle Scholar
  12. Degaspari G, Eckelt A (2015) Life in the highly dynamic montane riverine landscape—beetle communities of three habitat types of the EU Habitats Directive in Kalkalpen National Park. Acta Zoo Bot Austria 152:107–134Google Scholar
  13. Dirkx GHP (1998) Wood-pasture in Dutch common woodlands and the deforestation of the Dutch landscape. In: Kirby KJ, Watkins C (eds) The Ecological history of European Forests. CAB International, Wallingford, pp 53–62Google Scholar
  14. Djupström LB, Weslien J, ten Hoopen J, Schroeder LM (2012) Restoration of habitats for a threatened saproxylic beetle species in a boreal landscape by retaining dead wood on clear-cuts. Biol Conserv 155:44–49. doi: 10.1016/j.biocon.2012.06.009 CrossRefGoogle Scholar
  15. Eckelt A, Kahlen M (2012) Die holzbewohnende Käferfauna des Nationalpark Kalkalpen in Oberösterreich (Coleoptera). Beiträge zur Naturkunde Oberösterreichs 22:3–57Google Scholar
  16. European Council (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. OJ L 206:7–50Google Scholar
  17. Favreau JM, Drew CA, Hess GR et al (2006) Recommendations for assessing the effectiveness of surrogate species approaches. Biodivers Conserv 15:3949–3969. doi: 10.1007/s10531-005-2631-1 CrossRefGoogle Scholar
  18. Foit J (2010) Distribution of early-arriving saproxylic beetles on standing dead Scots pine trees. Agric For Entomol 12:133–141. doi: 10.1111/j.1461-9563.2009.00461.x CrossRefGoogle Scholar
  19. Foit J, Kašák J, Nevoral J (2016) Habitat requirements of the endangered longhorn beetle Aegosoma scabricorne (Coleoptera: Cerambycidae): a possible umbrella species for saproxylic beetles in European lowland forests. J Insect Conserv 20:837–844. doi: 10.1007/s10841-016-9915-5 CrossRefGoogle Scholar
  20. Freude H, Harde K, Lose GA (1964–1983) Die Käfer Mitteleuropas. 12 Volumes. Goecke & Evers, KrefeldGoogle Scholar
  21. Fritz SA, Purvis A (2010) Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv Biol 24:1042–1051. doi: 10.1111/j.1523-1739.2010.01455.x CrossRefPubMedGoogle Scholar
  22. Gossner MM, Lachat T, Brunet J et al (2013) Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol 27:605–614. doi: 10.1111/cobi.12023 CrossRefPubMedGoogle Scholar
  23. Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23. doi: 10.1146/annurev.ecolsys.33.010802.150507 CrossRefGoogle Scholar
  24. Gutowski JM, Suko K, Zub K, Bohdan A (2014) Habitat preferences of Boros schneideri (Coleoptera: Boridae) in the natural tree stands of the Bialowieza forest. J Insect Sci. 14 (276) doi: 10.1093/jisesa/ieu138
  25. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford Univ. Press, OxfordGoogle Scholar
  26. Hilbert J, Wiensczyk A (2007) Old-growth definitions and management: a literature review. BC J Ecosyst Manag 8:15–31. doi: 10.1111/cobi.12370 Google Scholar
  27. Horak J, Zaitsev A, Vavrova E (2011) Ecological requirements of a rare saproxylic beetle Cucujus haematodes—the bettles stronghold on the edge of its distribution area. Insect Conserv Divers 4:81–88CrossRefGoogle Scholar
  28. Horion A (1941–1974) Faunistik der mitteleuropäischen Käfer. 12 Volumes. Krefeld, FrankfurtGoogle Scholar
  29. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363. doi: 10.1002/bimj.200810425 CrossRefGoogle Scholar
  30. Hunt T, Bergsten J, Levkanicova Z et al (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916. doi: 10.1126/science.1146954 CrossRefPubMedGoogle Scholar
  31. Iablokoff AK (1951) Communications—Reliques glaciaires et réserves biologiques. CRSomScéances SocBiogéogr 247:185–199Google Scholar
  32. Johnson EA, Miyanishi K, Weir JMH (1995) Old-growth, disturbance, and ecosystem management. Can J Bot 73:918–926CrossRefGoogle Scholar
  33. Kindlmann P, Křenová Z (2016) Biodiversity: protect Czech park from development. Nature 531:448–448. doi: 10.1038/531448d CrossRefPubMedGoogle Scholar
  34. Lachat T, Chumak M, Chumak V et al (2016) Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv Divers 9:559–573. doi: 10.1111/icad.12188 CrossRefGoogle Scholar
  35. Leibundgut H (1982) Europäische Urwälder der Bergstufe, dargestellt für Forstleute, Naturwissenschafter und Freunde des Waldes. Haupt Verlag, Bern/StuttgartGoogle Scholar
  36. Lorenz J (2010) “Urwaldrelikt”-Käferarten in Sachsen (Coleoptera). Sächsische Entomol Zeitschrift 5:59–98Google Scholar
  37. Miklin J, Cizek L (2014) Erasing a European biodiversity hot-spot: Open woodlands, veteran trees and mature forests succumb to forestry intensification, succession, and logging in a UNESCO Biosphere Reserve. J Nat Conserv 22:35–41CrossRefGoogle Scholar
  38. Müller J, Bußler H, Bense U et al (2005) Urwald relict species–Saproxylic beetles indicating structural qualities and habitat tradition. Waldoekologie online 2:106–113Google Scholar
  39. Müller J, Jarzabek-Müller A, Bussler H (2013) Some of the rarest European saproxylic beetles are common in the wilderness of Northern Mongolia. J Insect Conserv 17:989–1001. doi: 10.1007/s10841-013-9581-9 CrossRefGoogle Scholar
  40. Müller J, Brustel H, Brin A et al (2015) Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography (Cop) 38:499–509. doi: 10.1111/ecog.00908 doiCrossRefGoogle Scholar
  41. Müller J, Thorn S, Baier R et al (2016) Protecting the forests while allowing removal of damaged trees may imperil saproxylic insect biodiversity in the Hyrcanian beech forests of Iran. Conserv Lett 9:106–113. doi:  10.1111/conl.12187.This CrossRefGoogle Scholar
  42. Nationalpark O.ö. Kalkalpen Ges.m.b.H. (2016) Natürliche Buchenwälder des Nationalpark Kalkalpen, Schutz und Erbe alter Wälder. Schriftenreihe Nationalpark Kalkalpen 16Google Scholar
  43. Nieto A, Alexander KNA (2010) European Red List of Saproxylic Beetles. Publication Office of the European Union, LuxembourgGoogle Scholar
  44. Nilsson SG, Baranowski R (1993) Skoghistorikens betydelse för artsammsättning av vedskalbaggar i urskogsartad blandskog. [Species composition of wood beetles in an unmanaged, mixed forest in relation to forest history]. Entomol Tidskr 114:133–146Google Scholar
  45. Nilsson SG, Baranowski R (1994) Indikatorer pa jätteträdskontinuitet—svenska förekommster av knäppare son är beroende av grova, levande trät. [Indicators of megatree continuity—Swedish distribution of click beetles dependent on hollow trees]. Entomol Tidskr 115:81–97Google Scholar
  46. Palm T (1950) Die Holz- und Rindenkäfer der nordschwedischen Laubbäume. Medd Från Statens Skogsforskningsinstitut 40Google Scholar
  47. Palm T (1959) Die Holz- und Rindenkäfer der süd- und mittelschwedischen Laubbäume. Entomol Sällskapet 1Google Scholar
  48. Parviainen J (2005) Virgin and natural forests in the temperate zone of Europe. For Snow Landsc Res 79:9–18Google Scholar
  49. Parviainen J (1999) Strict forest reserves in Europe—efforts to enhance biodiversity and strengthen research related to natural forests in Europe. In: Parviainen J, Little D, Doyle M, et al. (eds) Res. For. Reserv. Nat. For. Eur. Ctries. EFI Proceedings:7–33Google Scholar
  50. Paulenka J, Paule L (1994) Conservation of forests in Central Europe. Proceedings of the WWF Workshop held in Zvolen July 7–9. 1994. Arbora PublisherGoogle Scholar
  51. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  52. Radkau J (2007) Holz—Wie ein Naturstoff Geschichte schreibt. Oekom Verlag, MünchenGoogle Scholar
  53. Ranius T (2002) Osmoderma eremita as an indicator of species richness. Biodivers Conserv 11:931–941CrossRefGoogle Scholar
  54. Saalas U (1917) Die Fichtenkäfer Finnlands: Studien über die Entwicklungsstadien, Lebensweise und geographische Verbreitung der an Picea excelsa lebenden Coleopteren. Annales Academiae Scientarum Fennicae Ser. A. Tom. VIIIGoogle Scholar
  55. Sanchez A, Chittaro Y, Monnerat C, Gonseth Y (2016) Les Coléoptères saproxyliques emblématiques de Suisse, indicateurs de la qualité de nos forêts et milieux boisés. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 89:261–280Google Scholar
  56. Schmidl J, Büche B (2015) Die Rote Liste und Gesamtartenliste der Käfer (Coleoptera, exkl. Lauf- und Wasserkäfer) Deutschlands im Überblick. Naturschutz und Biologische Vielfalt 70Google Scholar
  57. Sebek P, Bace R, Bartos M et al (2015) Does a minimal intervention approach threaten the biodiversity of protected areas? A multi-taxa short-term response to intervention in temperate oak-dominated forests. For Ecol Manag 358:80–89. doi: 10.1016/j.foreco.2015.09.008 CrossRefGoogle Scholar
  58. Sebek P, Vodka S, Bogusch P et al (2016) Open-grown trees as key habitats for arthropods in temperate woodlands: the diversity, composition, and conservation value of associated communities. For Ecol Manag 380:172–181. doi: 10.1016/j.foreco.2016.08.052 CrossRefGoogle Scholar
  59. Seibold S, Brandl R, Buse J et al (2015) Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv Biol 29:382–390. doi:  10.1111/cobi.12427 CrossRefPubMedGoogle Scholar
  60. Siitonen J, Saaristo L (2014) Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forest. Biol Conserv 94:211–220CrossRefGoogle Scholar
  61. Stokland J, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  62. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100. doi: 10.1093/bioinformatics/btn35 CrossRefPubMedGoogle Scholar
  63. Whitehead P (1997) Beetle faunas of the European angiosperm Urwald: problems and complexities. Biologia 5:147–152Google Scholar
  64. Whitehouse NJ (2006) The Holocene British and Irish ancient forest fossil beetle fauna: implications for forest history, biodiversity and faunal colonisation. Quat Sci Rev 25:1755–1789. doi: 10.1016/j.quascirev.2006.01.010 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andreas Eckelt
    • 1
  • Jörg Müller
    • 2
    • 3
  • Ulrich Bense
    • 4
  • Hervé Brustel
    • 5
  • Heinz Bußler
    • 6
  • Yannick Chittaro
    • 7
  • Lukas Cizek
    • 8
  • Adrienne Frei
    • 9
  • Erwin Holzer
    • 10
  • Marcin Kadej
    • 11
  • Manfred Kahlen
    • 1
  • Frank Köhler
    • 12
  • Georg Möller
    • 13
  • Hans Mühle
    • 14
  • Andreas Sanchez
    • 7
  • Ulrich Schaffrath
    • 15
  • Jürgen Schmidl
    • 16
  • Adrian Smolis
    • 11
  • Alexander Szallies
    • 17
  • Tamás Németh
    • 18
  • Claus Wurst
    • 19
  • Simon Thorn
    • 2
  • Rune Haubo Bojesen Christensen
    • 20
  • Sebastian Seibold
    • 21
  1. 1.Tiroler LandesmuseenNaturwissenschaftliche Sammlungen, Sammlungs- und ForschungszentrumHall in TirolAustria
  2. 2.Field Station Fabrikschleichach, Department of Animal Ecology and Tropical BiologyBiocenter University of WürzburgRauhenebrachGermany
  3. 3.Bavarian Forest National ParkGrafenauGermany
  4. 4.MössingenGermany
  5. 5.Ecole d’Ingénieurs de Purpan, INPTToulouse Cedex 03France
  6. 6.Bayerische Landesanstalt für Wald und Forstwirtschaft (LWF)FreisingGermany
  7. 7.info fauna - CSCFNeuchâtelSwitzerland
  8. 8.Institute of EntomologyBiology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
  9. 9.Büro für Waldökologische FragenZurichSwitzerland
  10. 10.AngerAustria
  11. 11.Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology, Faculty of Biological ScienceUniversity of WrocławWrocławPoland
  12. 12.BornheimGermany
  13. 13.WadernGermany
  14. 14.MunichGermany
  15. 15.KasselGermany
  16. 16.AG Ökologie, Department Biologie/Institut für EntwicklungsbiologieUniversität Erlangen-NürnbergErlangenGermany
  17. 17.Zürcher Hochschule für angewandte Wissenschaften ZHAWWädenswilSwitzerland
  18. 18.Department of ZoologyHungarian Natural History MuseumBudapestHungary
  19. 19.Büro für Naturschutzfachliche GutachtenKarlsruheGermany
  20. 20.VærløseDenmark
  21. 21.Terrestrial Ecology Research Group, Department of Ecology and Ecosystem ManagementTechnische Universität MünchenFreisingGermany

Personalised recommendations