Advertisement

Journal of Insect Conservation

, Volume 20, Issue 6, pp 1033–1045 | Cite as

The importance of resource distribution: spatial co-occurrence of host plants and host ants coincides with increased egg densities of the Dusky Large Blue Maculinea nausithous (Lepidoptera: Lycaenidae)

  • Christian Kempe
  • Piotr Nowicki
  • Alexander Harpke
  • Oliver Schweiger
  • Josef Settele
ORIGINAL PAPER
  • 171 Downloads

Abstract

The occurrence of the Dusky Large Blue Butterfly (Maculinea nausithous) critically depends on the availability of two key resources: the Great Burnet (Sanguisorba officinalis) as primary nectar source for adults, for egg laying and early larval development, and the host ant Myrmica rubra as the food of late instar larvae. Thus, their distributions are key parameters shaping habitat suitability, and we expected that overlapping of both resources would have a strong impact on the size of local M. nausithous populations. Their egg density may be affected (a) by the fraction of host plants per site located within My. rubra activity ranges at the patch scale, or (b) by the availability of host plants with host ants in close range at the local scale, due to the potential ability of butterfly females to detect their host ants. To test the above hypothesis, we recorded spatial distribution patterns of host plants and host ants on 29 study sites in south-western Germany and related them to egg density data of M. nausithous. We found a positive relationship between co-occurence of host plant and host ant and M. nausithous egg density at the patch scale, whereas no correlation was found at the local scale. Thus, focal populations are strongly limited by the abundance of host plants, covered with My. rubra activity, as ant-mediated oviposition could not be proved. Our results underline the importance of resource distribution; the understanding of its impacts may provide useful insights into how M. nausithous habitats can be managed in order increase their carrying capacity.

Keywords

Lycaenidae Myrmica Sanguisorba Oviposition Habitat management 

Notes

Acknowledgements

We are grateful to Jens Dauber, who provided support in ant identification, to Martin Musche, Tamila Neumann and Toni Kasiske, who helped in lab analysis. We thank the authorities in Rhineland-Palatinate (Struktur-und Genehmigungsdirektion Süd, Neustadt an der Weinstraße, Untere Naturschutzbehörden of the Kreisverwaltungen Bad Dürkheim, Germersheim, Rhein-Pfalz-Kreis, Südliche Weinstraße and of the Stadtverwaltungen Landau in der Pfalz and Neustadt an der Weinstraße) as well as the landowners and farmers for their cooperation at the study sites. Special thanks to Christian Weisser for providing accommodation and lots of support during the field work period.

Funding

The project was funded by the German Federal Environmental Foundation (DBU) and the Helmholtz Center for Environmental Research (UFZ). PN was supported by the Polish National Science Centre Grant DEC-2013/11/B/NZ8/00912.

References

  1. Anton C, Musche M, Hula V, Settele J (2008) Myrmica host-ants limit the density of the ant-predatory large blue Maculinea nausithous. J Insect Conserv 12:511–517CrossRefGoogle Scholar
  2. Barton K (2015) MuMIn: Multi-model inference. R package version 1.9.13 vol 1Google Scholar
  3. Bonelli S, Vrabec V, Witek M, Barbero F, Patricelli D, Nowicki P (2013) Selection on dispersal in isolated butterfly metapopulations. Popul Ecol 55:469–478CrossRefGoogle Scholar
  4. Cadenasso M, Traynor M, Pickett ST (1997) Functional location of forest edges: gradients of multiple physical factors. Can J For Res 27:774–782CrossRefGoogle Scholar
  5. Cerda X, Retana J, Manzaneda A (1998) The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia 117:404–412. doi: 10.1007/s004420050674 CrossRefGoogle Scholar
  6. Dahms H, Wellstein C, Wolters V, Dauber J (2005) Effects of management practices on ant species richness and community composition in grasslands (Hymenoptera: Formicidae). Myrmecologische Nachrichten 7:9–16Google Scholar
  7. Dauber J, Wolters V (2004) Edge effects on ant community structure and species richness in an agricultural landscape. Biodivers Conserv 13:901–915CrossRefGoogle Scholar
  8. Ellenberg H (1991) Zeigerwerte der Gefäßpflanzen (ohne Rubus). In: Ellenberg HW, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (ed) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot vol 18. pp 9-166Google Scholar
  9. Elmes GW (1975) Population Studies on the Genus Myrmica (Hymenoptera, Formicidae), with Special Reference to Southern England. Unpublished PhD thesis, University of LondonGoogle Scholar
  10. Elmes GW, Clarke RT, Thomas JA, Hochberg ME (1996) Empirical tests of specific predictions made from a spatial model of the population dynamics of Maculinea rebeli, a parasitic butterfly of red ant colonies. Acta Oecologica-Inter J Ecol 17:61–80Google Scholar
  11. Elmes GW, Thomas JA, Wardlaw JC, Hochberg ME, Clarke RT, Simcox DJ (1998) The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. J Insect Conserv 2:67–78CrossRefGoogle Scholar
  12. ESRI (2011) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, CAGoogle Scholar
  13. EU (1992) The Council of the European Communities: Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora.Google Scholar
  14. Geißler S, Settele J (1990) Zur Ökologie und zum Ausbreitungsverhalten von Maculinea nausithous, Bergsträsser 1779 (Lepidoptera, Lycaenidae). Verh Westdeut Entomol Tag 1989:187–193Google Scholar
  15. Gockel R, Gronimus S, Henninger T, Schumann F (2009) Landwirtschaftlicher Fachplan Rheinpfalz. Landwirtschaftskammer Rheinland-Pfalz. http://www.lwk-rlp.de/de/beratung/raumordnung-regionalentwicklung-und-naturschutz/
  16. Greenslade PJM (1973) Sampling ants with pitfall traps: digging-in effects. Insect Soc 20:343–353. doi: 10.1007/BF02226087 CrossRefGoogle Scholar
  17. Grill A, Cleary DF, Stettmer C, Bräu M, Settele J (2008) A mowing experiment to evaluate the influence of management on the activity of host ants of Maculinea butterflies. J Insect Conserv 12:617–627CrossRefGoogle Scholar
  18. EUNIS habitat classification (2014) European Environment Agency. http://eunis.eea.europa.eu/. Accessed 06/01/2014
  19. Hayes MP (2015) The biology and ecology of the large blue butterfly Phengaris (Maculinea) arion: a review. J Insect Conserv 19:1037–1051. doi: 10.1007/s10841-015-9820-3 CrossRefGoogle Scholar
  20. Hölldobler B, Wilson EO (1990) The Ants. Belknap Press of Harvard University PressGoogle Scholar
  21. Jansen SHDR, Holmgren M, van Langevelde F, Wynhoff I (2012) Resource use of specialist butterflies in agricultural landscapes: conservation lessons from the butterfly Phengaris (Maculinea) nausithous. J Insect Conserv 16:921–930CrossRefGoogle Scholar
  22. Johst K, Drechsler M, Thomas J, Settele J (2006) Influence of mowing on the persistence of two endangered large blue butterfly species. J Appl Ecol 43:333–342CrossRefGoogle Scholar
  23. LeBrun EG, Tillberg CV, Suarez AV, Folgarait PJ, Smith CR, Holway DA (2007) An experimental study of competition between fire ants and Argentine ants in their native range. Ecology 88:63–75. doi: 10.1890/0012-9658(2007)88[63:aesocb]2.0.co;2 CrossRefPubMedGoogle Scholar
  24. Loritz H, Settele J (2005) Effects of human land-use on availability and quality of habitats of the Large Blue butterfly. In: Settele J, Kühn E, Thomas JA (eds) Studies on the Ecology and conservation of Butterflies in Europe. Vol.2: Species Ecology along a European Gradient: Maculinea Butterflies as a Model., vol 2. pp 225–227Google Scholar
  25. Musche M, Anton C, Worgan A, Settele J (2006) No experimental evidence for host ant related oviposition in a parasitic butterfly. J Insect Behav 19:631–643CrossRefGoogle Scholar
  26. Nowicki P, Halecki W, Kalarus K (2013) All natural habitat edges matter equally for endangered Maculinea butterflies. J Insect Conserv 17:139–146CrossRefGoogle Scholar
  27. Nowicki P, Vrabec V, Binzenhofer B, Feil J, Zaksek B, Hovestadt T, Settele J (2014) Butterfly dispersal in inhospitable matrix: rare, risky, but long-distance. Landsc Ecol 29:401–412. doi: 10.1007/s10980-013-9971-0 CrossRefGoogle Scholar
  28. Patricelli D et al (2015) Plant defences against ants provide a pathway to social parasitism in butterflies. Proc R Soc B 282:20151111CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pech P, Fric Z, Konvicka M (2007) Species-Specificity of the Phengaris (Maculinea)Myrmica Host System: fact or Myth? (Lepidoptera: Lycaenidae; Hymenoptera: Formicidae). Sociobiology 50:983–1004Google Scholar
  30. Pfeifer MA, Glinka U, Settele J (2004) Die Schätzung von Populationsgrößen bei Tagfaltern anhand von Präimaginalstadien am Beispiel von Ameisenbläulingen (Lepidoptera: Lycaenidae: Maculinea). Mainzer Naturwissenschaftliches Archiv 42:225–244Google Scholar
  31. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  32. Radchenko AG, Elmes GW (2010) Fauna Mundi: Myrmica Ants (Hymenoptea : Formicidae) of the Old World. Natura optima dux FoundationGoogle Scholar
  33. Ries L, Fletcher Jr RJ, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Ann Rev Ecol Evol Syst 491–522Google Scholar
  34. Seifert B (2007) Die Ameisen Mittel-und Nordeuropas. Lutra Verlags-und Vertriebsgesellschaft, TauerGoogle Scholar
  35. Settele J (1998) Metapopulationsanalyse auf Rasterdatenbasis: Möglichkeiten des Modelleinsatzes und der Ergebnisumsetzung im Landschaftsmassstab am Beispiel von Tagfaltern. Teubner, LeipzigCrossRefGoogle Scholar
  36. Settele J, Kühn E, Thomas JA (2005) Studies on the ecology and conservation of butterflies in Europe: vol 2 : species ecology along a European gradient: maculinea butterflies as a model : conference proceedings. Pensoft Publishers, SofiaGoogle Scholar
  37. Sliwinska EB, Nowicki P, Nash DR, Witek M, Settele J, Woyciechowski M (2006) Morphology of caterpillars and pupae of European Maculinea species (Lepidoptera : Lycaenidae) with an identification table. Entomologica Fennica 17:351–358Google Scholar
  38. Smith R, Shiel R, Millward D, Corkhill P, Sanderson R (2002) Soil seed banks and the effects of meadow management on vegetation change in a 10-year meadow field trial. J Appl Ecol 39:279–293CrossRefGoogle Scholar
  39. Stankiewicz A, Sielezniew M (2002) Host specificity of Maculinea teleius Bgstr. and M. nausithous Bgstr.(Lepidoptera: Lycaenidae) the new insight. Annales Zoologici 52:403–408Google Scholar
  40. Stettmer C, Binzenhöfer B, Hartmann P (2001) Habitatmanagement und Schutzmaßnahmen für die Ameisenbläulinge Glaucopsyche teleius und Glaucopsyche nausithous. Teil 2: Habitatansprüche, Gefährdung und Pflege. Natur und Landschaft 83:480–487Google Scholar
  41. Stradling DJ (1968) Some aspects of the ecology of ants at Newborough Warren National Nature Reserve. Unpublished PhD thesis, University of WalesGoogle Scholar
  42. Thomas JA (1991) Rare species conservation: case studies of European butterflies. Blackwell Scientific Publications, OxfordGoogle Scholar
  43. Thomas JA (1995) The ecology and conservation of Maculinea arion and other European species of large blue butterfly. In: Pullin AS (ed) Ecology and conservation of butterflies. Springer Netherlands, Dordrecht, pp 180–197. doi: 10.1007/978-94-011-1282-6_13 Google Scholar
  44. Thomas JA, Elmes GW (1998) Higher productivity at the cost of increased host-specificity when Maculinea butterfly larvae exploit ant colonies through trophallaxis rather than by predation. Ecol Entomol 23:457–464CrossRefGoogle Scholar
  45. Thomas JA, Elmes GW (2001) Food-plant niche selection rather than the presence of ant nests explains oviposition patterns in the myrmecophilous butterfly genus Maculinea. Proc R Soc London B Biol Sci 268:471–477CrossRefGoogle Scholar
  46. Thomas JA, Settele J (2004) Evolutionary biology: butterfly mimics of ants. Nature 432:283–284CrossRefPubMedGoogle Scholar
  47. Thomas JA, Wardlaw JC (1990) The effect of queen ants on the survival of Maculinea arion larvae in Myrmica ant nests. Oecologia 85:87–91CrossRefGoogle Scholar
  48. Thomas JA, Wardlaw JC (1992) The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia 91:101–109CrossRefGoogle Scholar
  49. Thomas JA, Elmes GW, Wardlaw JC, Woyciechowski M (1989) Host specificity among Maculinea butterflies in Myrmica ant nests. Oecologia 79:452–457CrossRefGoogle Scholar
  50. Thomas J, Elmes G, Wardlaw J (1993) Contest competition among Maculinea rebeli butterfly larvae in ant nests. Ecol Entomol 18:73–76CrossRefGoogle Scholar
  51. Van Dyck H, Oostermeijer JGB, Talloen W, Feenstra V, van der Hidde A, Wynhoff I (2000) Does the presence of ant nests matter for oviposition to a specialized myrmecophilous Maculinea butterfly? Proc R Soc London B Biol Sci 267:861–866CrossRefGoogle Scholar
  52. Venables WN, Ripley BD (2002) Modern applied statistics with S. 4th ed. Springer, New YorkCrossRefGoogle Scholar
  53. Witek M, Sliwinska EB, Skórka P, Nowicki P, Settele J, Woyciechowski M (2006) Polymorphic growth in larvae of Maculinea butterflies, as an example of biennialism in myrmecophilous insects. Oecologia 148:729–733CrossRefPubMedGoogle Scholar
  54. Witek M et al (2008) Host ant specificity of large blue butterflies Phengaris (Maculinea) (Lepidoptera: Lycaenidae) inhabiting humid grasslands in East-central Europe. Eur J Entomol 105:871–877CrossRefGoogle Scholar
  55. World Conservation Monitoring Centre (1996) Phengaris nausithous. The IUCN Red List of Threatened Species 1996. e.T12662A3371835. doi: 10.2305/IUCN.UK.1996.RLTS.T12662A3371835.en. Accessed 20 November 2015
  56. Wynhoff I, Grutters M, Van Langevelde F (2008) Looking for the ants: selection of oviposition sites by two myrmecophilous butterfly species. Animal Biol 58:371–388CrossRefGoogle Scholar
  57. Wynhoff I, van Gestel R, van Swaay C, van Langevelde F (2011) Not only the butterflies: managing ants on road verges to benefit Phengaris (Maculinea) butterflies. J Insect Conserv 15:189–206CrossRefGoogle Scholar
  58. Wynhoff I, Bakker RB, Oteman B, Arnaldo PS, Langevelde F (2014) Phengaris (Maculinea) alcon butterflies deposit their eggs on tall plants with many large buds in the vicinity of Myrmica ants. Insect Conserv Divers 8:177–188. doi: 10.1111/icad.12100 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Helmholtz Centre for Environmental Research (UFZ)Department of Community EcologyHalleGermany
  2. 2.Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
  3. 3.iDiv, German Centre for Integrative Biodiversity ResearchHalle-Jena-LeipzigLeipzigGermany

Personalised recommendations