Advertisement

Journal of Insect Conservation

, Volume 20, Issue 6, pp 979–988 | Cite as

Vegetation structure determines insect herbivore diversity in seasonally dry tropical forests

  • Camila Rabelo Oliveira LealEmail author
  • Jhonathan Oliveira Silva
  • Leandro Sousa-Souto
  • Frederico de Siqueira Neves
ORIGINAL PAPER

Abstract

Vegetation structure can often determine insect herbivore fauna in forests, but this mechanism has been demonstrated in seasonally dry tropical forests (SDTFs) only at small spatial scales. In this study we evaluated the effects of the geographical location of SDTFs and vegetation structure on insect herbivore communities (leaf-chewing and sap-sucking guilds) in three Brazilian ecoregions (Cerrado, Cerrado/Caatinga transition, and Caatinga). We tested the following predictions: (1) insect herbivore species composition, richness, abundance and beta diversity differ among forests in different ecoregions; (2) insect richness, abundance and beta diversity are positively related to tree richness and density; (3) spatial turnover of species is the primary mechanism that generates herbivorous insect β-diversity in different ecoregions, and is positively influenced by tree richness. The composition, richness, and abundance of herbivorous insects differed over SDFs along the gradient of Cerrado and Caatinga. Both herbivore guilds responded positively to tree richness. Tree density only determined the richness and abundance of sap-sucking herbivores. Insect β-diversity was similar among Cerrado and transition areas, but lower in Caatinga itself; β-diversity was also positively affected by tree richness. Species turnover, as opposed to nestedness, was the main mechanism generating β-diversity, but itself was not related to tree richness. We demonstrate in this study the importance of landscape diversity and availability of local resources for herbivorous insect communities, and we emphasize the importance of SDTF conservation in different ecoregions as a result of species turnover.

Keywords

Herbivorous Multiplicative partition Nestedness Resource availability Simpson dissimilarity Spatial scale 

Notes

Acknowledgments

The authors wish to thank P.M.F.G. Figueiredo and L.A. Evangelista for their help in data sampling and identification of morphospecies and L.A.D. Falcão for his comments on the early drafts of this manuscript. We gratefully acknowledge the staff of the Instituto Estadual de Florestas (IEF-MG) for allowing us to stay and work, and for logistical support. We are also grateful to Vincenzo A. Ellis for kindly revising the English grammar and spelling. We are thankful for the financial support provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe (FAPITEC), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Rede Matas Secas.

Supplementary material

10841_2016_9930_MOESM1_ESM.doc (185 kb)
Supplementary material 1 (DOC 185 KB)

References

  1. Ab’Sáber A (2003) Os domínios de natureza no Brasil: potencialidades paisagísticas, 7th edn. Ateliê Editorial, São PauloGoogle Scholar
  2. Almeida-Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239CrossRefGoogle Scholar
  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  4. Apgaua DMG, Santos RM, Pereira DGS, Menino GCO, Pires GG, Fontes MAL, Tng DYP (2014) Beta-diversity in seasonally dry tropical forests (SDTF) in the Caatinga Biogeographic Domain, Brazil, and its implications for conservation. Biodivers Conserv 23:217–232CrossRefGoogle Scholar
  5. Araújo WS (2013) Different relationships between galling and non-galling herbivore richness and plant species richness: a meta-analysis. Arthropod-Plant Interact 7:373–377CrossRefGoogle Scholar
  6. Arruda DM, Ferreira-Júnior WG, Teixeira RDBL, Schaefer CEGR (2013) Phytogeographical patterns of dry forests sensu stricto in northern Minas Gerais State, Brazil. An Acad Bras Ciên 85:283–294Google Scholar
  7. Banda K, Delgado-Salinas A, Dexter KG et al (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353:1383–1387CrossRefGoogle Scholar
  8. Baselga A (2010a) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143CrossRefGoogle Scholar
  9. Baselga A (2010b) Multiplicative partition of true diversity yields independent alpha and beta components; additive partition does not. Ecology 91:1974–1981CrossRefPubMedGoogle Scholar
  10. Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21:1223–1232CrossRefGoogle Scholar
  11. Baselga A, Orme CDL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812CrossRefGoogle Scholar
  12. Basset Y, Cizek L, Cuénoud P et al (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484CrossRefPubMedGoogle Scholar
  13. Becerra JX (1997) Insects on plants: macroevolutionary chemical trends in host use. Science 276:253–256CrossRefPubMedGoogle Scholar
  14. Bernays EA (1998) Evolution of feeding behavior in insect herbivores. Bioscience 48:35–44CrossRefGoogle Scholar
  15. Bernays E, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892CrossRefGoogle Scholar
  16. Coelho MS, Almada ED, Quintino AV, Fernandes GW, Santos RM, Sanchez-Azofeifa GA, Espírito-Santo MM (2012) Floristic composition and structure of a tropical dry forest at different successional stage in the Espinhaço Mountains, southeastern Brazil. Interciência 37:190–196Google Scholar
  17. Crawley MJ (2013) Statistical computing: an introduction to data analysis using s-plus. Wiley, LondonGoogle Scholar
  18. Crist TO, Veech JA, Gering JC, Summerville KS (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. Am Nat 162:734–743CrossRefPubMedGoogle Scholar
  19. Cuevas-Reyes P, Quesada M, Hanson P, Dirzo R, Oyama K (2004) Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant age and plant density. J Ecol 92:707–716CrossRefGoogle Scholar
  20. Dyer LA, Singer MS, Lill JT, Stireman JO, Gentry GL, Marquis RJ, Ricklefs RE, Greeney HF, Wagner DL, Morais HC, Diniz IR, Kursar TA, Coley PD (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696–700CrossRefPubMedGoogle Scholar
  21. Espírito-Santo MM, Neves FS, Fernandes GW, Silva JO (2012) Plant phenology and absence of sex-biased gall attack on three species of Baccharis. Plos One 7:e46896. doi: 10.1371/journal.pone.0046896 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Forister ML, Novotny V, Panorska AK et al (2015) The global distribution of diet breadth in insect herbivores. PNAS 112:442–447CrossRefPubMedGoogle Scholar
  23. Giulietti AM, Menezes NL, Pirani JR, Meguro M, Wanderley MGL (1987) Flora da Serra do Cipó, Minas Gerais: caracterização e lista das espécies. Bol Bot USP 9:1–151CrossRefGoogle Scholar
  24. Leal CRO, Fagundes M, Neves FS (2015) Change in herbivore insect communities from adjacent habitats in a transitional region. Arthropod-Plant Interact 9:311–320CrossRefGoogle Scholar
  25. Lewinsohn TM, Roslin T (2008) Four ways towards tropical herbivore megadiversity. Ecol Lett 11:398–416CrossRefPubMedGoogle Scholar
  26. Madeira BG, Espírito-Santo MM, D’Ângelo-Neto S, Nunes YRF, Sanchez-Azofeifa GA, Fernandes GW, Quesada M (2009) Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol 201:291–304CrossRefGoogle Scholar
  27. Marques T, Schoereder JH (2014) Ant diversity partitioning across spatial scales: ecological processes and implications for conserving tropical dry forests. Austral Ecol 39:72–82CrossRefGoogle Scholar
  28. Neves FS, Araújo LS, Fagundes M, Espírito-Santo MM, Fernandes GW, Sánchez-Azofeifa GA, Quesada M (2010) Canopy herbivory and insect herbivore diversity in a dry forest-savanna transition in Brazil. Biotropica 42:112–118CrossRefGoogle Scholar
  29. Neves FS, Sperber CF, Campos RI, Soares JP, Ribeiro SP (2013) Contrasting effects of sampling scale on insect herbivores distribution in response to canopy structure. Rev Biol Trop 61:125–137PubMedGoogle Scholar
  30. Neves FS, Silva JO, Espírito-Santo MM, Fernandes GW (2014) Insect herbivores and leaf damage along successional and vertical gradients in a tropical dry forest. Biotropica 46:14–24CrossRefGoogle Scholar
  31. Neves DM, Dexter KG, Pennington RT, Bueno ML & Oliveira-Filho AT (2015) Environmental and historical controls of floristic compositions across the South America Dry Diagonal. J Biogeogr. doi: 10.1111/jbi.12529 Google Scholar
  32. Novotny V, Basset Y (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564–572CrossRefGoogle Scholar
  33. Novotny V, Weiblen GD (2005) From communities to continents: beta diversity of herbivorous insects. Ann Zool Fenn 42:463–475Google Scholar
  34. Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844CrossRefPubMedGoogle Scholar
  35. Novotny V, Basset Y, Kitching R (2003) Herbivore assemblages and their food resources. In: Basset Y, Novotny V, Miller SE, Kitching RL (eds) Arthropods of tropical forests—spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge, pp 40–53Google Scholar
  36. Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118CrossRefPubMedGoogle Scholar
  37. Novotny V, Miller SE, Hulcr J, Drew RAI, Basset Y, Janda M, Setliff GP, Darrwo K, Stewart AJA, Auga J, Isua B, Molem K, Manumbor M, Tamtiai E, Mogia M, Weiblein GD (2007) Low beta diversity of herbivorous insects in tropical forests. Nature 448:692–695CrossRefPubMedGoogle Scholar
  38. Novotny V, Miller SE, Hrcek J, Baje L, Basset Y, Lewis OT, Stewart AJA, Weiblen GD (2012) Insects on plants: explaining the paradox of low diversity within specialist herbivore guilds. Am Nat 179:351–362CrossRefPubMedGoogle Scholar
  39. Ødegaard F (2006) Host specificity, alpha- and beta-diversity of phytophagous beetles in two tropical forests in Panama. Biodivers Conserv 15:83–105CrossRefGoogle Scholar
  40. Oksanen J, Blanchet G, Kindt R, Minchin PR, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) vegan: community ecology package. R package version 2.0-2. http://cran.r-project.org/
  41. Oliveira DG, Prata APN, Sousa-Souto L, Ferreira RA (2013). Does the edge effect influences plant community structure in a tropical dry forest? Rev Árvore 37:311–320CrossRefGoogle Scholar
  42. Peel MC, Finlayson BL, MacMahon TA (2007) Update world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  43. Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr 27:261–273CrossRefGoogle Scholar
  44. Pennington RT, Lavin M, Oliveira-Filho AT (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Ann Rev Ecol Evol Syst 40:437–457CrossRefGoogle Scholar
  45. Pezzini FF, Ranieri BD, Brandão DO, Fernandes GW, Quesada M, Espírito-Santo MM, Jacobi CM (2014) Changes in tree phenology along natural regeneration in a seasonally dry tropical forest. Plant Biosyst 148:965–974CrossRefGoogle Scholar
  46. Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forests of South America. Ann Mo Bot Gard 80:902–927CrossRefGoogle Scholar
  47. Quesada M, Sanchez-Azofeifa GA, Alvarez-Añorve M et al (2009) Succession and management of tropical dry forests in the Americas: review and new perspectives. For Ecol Manage 258:1014–1024CrossRefGoogle Scholar
  48. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  49. Rafael JA, Melo GAR, Carvalho CJB, Casari AS, Constantino R (2012) Os Insetos do Brasil: diversidade e taxonomia. Holos Editora, Ribeirão PretoGoogle Scholar
  50. Ribeiro JP, Walter BMT (1998) Fitofisionomias do bioma cerrado. In: Sano SM, Almeida SP (eds) Cerrado: ambiente e flora. Embrapa-CPAC, Planaltina, pp 89–168Google Scholar
  51. Ricklefs RE, Marquis RJ (2012) Species richness and niche space for temperate and tropical folivores. Oecologia 168:213–220CrossRefPubMedGoogle Scholar
  52. Rodrigues PMS, Silva JO, Eisenlohr PV, Schaefer CER (2014) Climate change effects on the geographic distribution of specialist trees of the Brazilian tropical dry forests. Braz J Biol 75:679–684CrossRefGoogle Scholar
  53. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124CrossRefGoogle Scholar
  54. Sanchez-Azofeifa GA, Quesada M, Rodríguez JP et al (2005) Research priorities for neotropical dry forests. Biotropica 37:477–485Google Scholar
  55. Santos RM, Oliveira-Filho AT, Eisenlohr PV, Queiroz LP, Cardoso DBOS, Rodal MJN (2012) Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil. Ecol Evol 2:409–428CrossRefPubMedPubMedCentralGoogle Scholar
  56. Scariot A, Sevilha AC (2005) Biodiversidade, estrutura e conservação de florestas estacionais deciduais no cerrado. In: Scariot A, Sousa-Silva JC, Felfili JM (eds) Cerrado: ecologia, biodiversidade e conservação. Ministério do Meio Ambiente, Brasília, pp 121–139Google Scholar
  57. Silva JO, Espírito-Santo MM, Melo GA (2012) Herbivory on Handroanthus ochraceus (Bignoniaceae) along a successional gradient in a tropical dry forest. Arthropod-Plant Interact 6:45–57CrossRefGoogle Scholar
  58. Silva ACC, Prata APN, Mello AP (2013) Flowering plants of the Grota do Angico Natural Monument, Caatinga of Sergipe, Brazil. Check List 9:733–739Google Scholar
  59. Sousa-Souto L, Santos EDS, Figueiredo PMFG, Santos AJ, Neves FS (2014) Is there a bottom-up cascade on the assemblages of trees, arboreal insects and spiders in a semiarid Caatinga? Arthropod-Plant Interact 8:581–591CrossRefGoogle Scholar
  60. Sunderland T, Apgaua D, Baldauf C et al (2015) Global dry forests: a prologue. Int For Rev 17:1–9Google Scholar
  61. Wardhaugh CW (2014) The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation. Biol Rev 89:1021–1041CrossRefPubMedGoogle Scholar
  62. Weiblen GD, Webb CO, Novotny V, Basset Y, Miller SE (2006) Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology 87:62–75CrossRefGoogle Scholar
  63. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Camila Rabelo Oliveira Leal
    • 1
    Email author
  • Jhonathan Oliveira Silva
    • 2
  • Leandro Sousa-Souto
    • 3
  • Frederico de Siqueira Neves
    • 4
  1. 1.Departamento de Biologia AnimalUniversidade Estadual de Campinas—UnicampCampinasBrazil
  2. 2.Colegiado de EcologiaUniversidade Federal do Vale do São Francisco—UnivasfSenhor do BonfimBrazil
  3. 3.Departamento de EcologiaUniversidade Federal de Sergipe—UFSSão CristóvãoBrazil
  4. 4.Departamento de Biologia GeralUniversidade Federal de Minas Gerais—UFMGBelo HorizonteBrazil

Personalised recommendations