Journal of Insect Conservation

, Volume 20, Issue 5, pp 781–788 | Cite as

Genista dwarf shrubs as key structures for a Mediterranean grasshopper species on alluvial gravel banks

  • Franz Löffler
  • Dominik Poniatowski
  • Thomas Fartmann


Natural floodplains belong to the most species-rich ecosystems worldwide. However, over the last decades there has been a strong decrease in the extent of natural floodplains. As a consequence, the biodiversity of these ecosystems has experienced a dramatic decline. In this study, we investigated the habitat and food preferences of the grasshopper species Chorthippus binotatus on gravel banks of a nearly natural river system in the Spanish Pyrenees. The studied plots on the alluvial gravel banks in the Spanish Pyrenees were characterised by strong differences in habitat structure. However, C. binotatus only occurred in sparsely-vegetated sub-Mediterranean dry grasslands. The abundance of the grasshopper species was also strongly related to habitat structure and cover of the main food source and dominant plant species of these open grasslands, the dwarf shrub Genista scorpius. Concerning habitat structure, the grasshopper species preferred habitats with sparse and low-growing vegetation with a high cover of bare ground and gravel/stones. C. binotatus occupies a very narrow ecological niche within the studied floodplain. It requires sparsely-vegetated gravel banks that ensure sufficient oviposition sites and a favourable ambient temperature for optimal development. G. scorpius dwarf shrubs have to be considered as multi-functional key elements in the habitats of C. binotatus. They offer high-quality food, shelter against predators and allow thermoregulation in a hot and dry Mediterranean environment. For the conservation of C. binotatus, we recommend maintaining and restoring both natural floodplain dynamics as well as traditional grazing systems.


Chorthippus Disturbance Dynamic habitat Food specialisation Land-use change Orthoptera 


  1. Adu-Acheampong S, Bazelet CS, Samways MJ (2016) Extent to which an agricultural mosaic supports endemic species-rich grasshopper assemblages in the Cape Floristic Region biodiversity. Agric Ecosys Environ 227:52–60CrossRefGoogle Scholar
  2. Arscott DB, Tockner K, Ward JV (2001) Thermal heterogeneity along a braided floodplain river (Tagliamento river, northeastern Italy). Can J Fish Aquat Sci 58:2359–2373CrossRefGoogle Scholar
  3. Bazelet CS, Samways MJ (2012) Grasshopper and butterfly local congruency in grassland remnants. J Insect Conserv 16:71–85CrossRefGoogle Scholar
  4. Belovsky GE, Slade JB (1993) The role of vertebrate and invertebrate predators in a grasshopper community. Oikos 68:193–201CrossRefGoogle Scholar
  5. Chappell MA, Whitman DW (1990) Grasshopper thermoregulation. In: Chapman RF, Joern A (eds) Biology of grasshoppers. Wiley, New YorkGoogle Scholar
  6. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  7. Eades DC, Otte D, Cigliano, MM, Braun H (2016) Orthoptera species file. Version 5.0/5.0 [21/04/2016].
  8. EC (2007) The habitats directive 92/43/EEC. European Community, BrusselsGoogle Scholar
  9. Fartmann T, Krämer B, Stelzner F, Poniatowski D (2012) Orthoptera as ecological indicators for succession in steppe grassland. Ecol Indic 20:337–344CrossRefGoogle Scholar
  10. García-Ruiz JM, Lasanta-Martínez T (1990) Land-use-changes of the Spanish Pyrenees. Mt Res Dev 10:241–255CrossRefGoogle Scholar
  11. Gardiner T, Dover J (2008) Is microclimate important for Orthoptera in open landscapes? J Insect Conserv 12(6):705–709Google Scholar
  12. Gardiner T, Hassall M (2009) Does microclimate affect grasshopper populations after cutting of hay in improved grassland? J Insect Conserv 13:97–102CrossRefGoogle Scholar
  13. Gardiner T, Hill J (2006) A comparison of three sampling techniques used to estimate population density and assemblage diversity of Orthoptera. J Orthoptera Res 15:45–51CrossRefGoogle Scholar
  14. Gardiner T, Pye M, Field R, Hill J (2002) The influence of sward height and vegetation composition in determining the habitat preferences of three Chorthippus species (Orthoptera: Acrididae) in Chelmsford, Essex, UK. J Orthoptera Res 11:207–213CrossRefGoogle Scholar
  15. Gardiner T, Hill J, Chesmore D (2005) Review of the methods frequently used to estimate the abundance of Orthoptera in grassland ecosystems. J Insect Conserv 9:151–173CrossRefGoogle Scholar
  16. Gartzia M, Fillat F, Pérez-Cabello F, Alados CL (2016) Influence of agropastoral system components on mountain grassland vulnerability estimated by connectivity loss. PLoS One 11(5):e0155193CrossRefPubMedPubMedCentralGoogle Scholar
  17. Helbing F, Blaeser TP, Löffler F, Fartmann T (2014) Response of Orthoptera communities to succession in alluvial pine woodlands. J Insect Conserv 18:215–224CrossRefGoogle Scholar
  18. Hernandez EI, Vilagrosa A, Pausas JG, Bellot J (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol 207:233–244CrossRefGoogle Scholar
  19. Ingrisch S, Köhler G (1998) Die heuschrecken mitteleuropas. Westarp Wissenschaften, MagdeburgGoogle Scholar
  20. Joern A (1979) Feeding patterns in grasshoppers (Orthoptera: Acrididae): factors influencing diet specialisation. Oecologia 38:325–347CrossRefGoogle Scholar
  21. Joern A, Behmer S (1998) Impact of die quality on demographic attributes in adult grasshoppers and the nitrogen limitation hypotheses. Ecol Entomol 23:174–184CrossRefGoogle Scholar
  22. Krämer B, Poniatowski D, Villar L, Fartmann T (2010) The Orthopteran communities of sub-Mediterranean dry grasslands (Aphyllanthion alliance) in the western Spanish Pyrenees. Articulata 25:59–72Google Scholar
  23. Kuhn K (2005) Die Kiesbänke des Tagliamento (Friaul, Italien)—ein Lebensraum für Spezialisten im Tierreich. In: der Bergwelt VS (ed) Rettet den Tagliamento, Sonderdruck aus dem Jahrbuch 2005, Munich, pp 37–44Google Scholar
  24. Lemke H, Löffler F, Fartmann T (2010) Habitat- und Nahrungspräferenzen des Kiesbank-Grashüpfers (Chorthippus pullus) in Südbayern. Articulata 25:133–149Google Scholar
  25. Maag N, Karpati T, Bollmann K (2013) Semi-natural river system maintains functional connectivity and gene flow of the critically endangered gravel grasshopper Chorthippus pullus. Biol Conserv 158:88–97CrossRefGoogle Scholar
  26. Marini L, Fontana P, Battisti A, Gaston KJ (2009) Response of Orthopteran diversity to abandonment of semi-natural meadows. Agric Ecosyst Environ 132:232–236CrossRefGoogle Scholar
  27. Munguira M, García-Barros E, Cano JM (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve T, Konvička M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54Google Scholar
  28. Münsch T, Fartmann T, Machalett B, Poniatowski D (2013) The pygmy mole cricket Xya variegata as an indicator for dynamic river systems. J Insect Conserv 17:521–528CrossRefGoogle Scholar
  29. Nickel H (2003) The leafhoppers and planthoppers of Germany (Hemiptera, Auchenorrhyncha): patterns and strategies in a highly diverse group of phytophagous insects. Pensoft, Sofia and MoscowGoogle Scholar
  30. O’Neill KM, Rolston MG (2007) Short-term dynamics of behavioural thermoregulation by adults of the grasshopper Melanoplus sanguinipes. J Insect Sci 7:1–14CrossRefPubMedGoogle Scholar
  31. Picaud F, Gloaguen V, Petit D (2002) Mechanistic aspects to feeding preferences in Chorthippus binotatus (Acrididae, Gomphocerinae). J Insect Behav 15:513–525CrossRefGoogle Scholar
  32. Picaud F, Bonnet E, Gloaguen V, Petit D (2003) Decision making for food choice by grasshoppers (Orthoptera: Acrididae): comparison between a specialist species on a shrubby legume and three graminivorous species. Environ Entomol 32:680–688CrossRefGoogle Scholar
  33. Poniatowski D, Fartmann T (2008) The classification of insect communities: lessons from Orthoptera assemblages of semi-dry grassland complexes in central Germany. Eur J Entomol 105:659–671CrossRefGoogle Scholar
  34. Poniatowski D, Fartmann T (2010) What determines the distribution of a flightless bush-cricket (Metrioptera brachyptera) in a fragmented landscape? J Insect Conserv 14:637–645CrossRefGoogle Scholar
  35. Poniatowski D, Defaut B, Llucià-Pomares D, Fartmann T (2009) The Orthoptera fauna of the Pyrenean region—a field guide. Articulata, Beiheft 14:1–143Google Scholar
  36. R Development Core Team (2016) R: a language and environment for statistical computing. (access 04/03/2016)
  37. Reich M (1991) Grasshoppers (Orthoptera, Saltatoria) on alpine and dealpine riverbanks and their use as indicators for natural floodplain dynamics. Regul Rivers Res Mgmt 6:333–339CrossRefGoogle Scholar
  38. Ritchie ME (2000) Nitrogen limitation and trophic vs. abiotic influences on insect herbivores in a temperate grassland. Ecology 81:1601–1612CrossRefGoogle Scholar
  39. Sardet E, Defaut B (2004) Les Orthopteres Menaces en France. Liste rouge nationale et listes rouges pardomaines biogeographiques. Materiaux Orthopteriques et Entomocenotiques 9:12–137Google Scholar
  40. Sardet E, Roesti C, Braud Y (2015) Orthoptères de France, Belgique, Luxembourg and Suisse. Biotope Éditions, MèzeGoogle Scholar
  41. Schirmel J, Blindow I, Fartmann T. (2010) The importance of habitat mosaics for Orthoptera (Caelifera and Ensifera) in dry heathlands. Eur J Entomol 107:129–132CrossRefGoogle Scholar
  42. Stoutjesdijk P, Barkman JJ (1992) Microclimate vegetation and fauna. Opulus Press, UppsalaGoogle Scholar
  43. Taiz L, Zeiger E, Møller IM, Murphy AS (2015) Plant physiology and development. Sinauer, Sunderland, MAGoogle Scholar
  44. Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29:308–330CrossRefGoogle Scholar
  45. Tockner K, Bunn SE, Gordon C, Naimann RJ, Quinn GP, Stanford JA (2008) Flood plains: critically threatened ecosystems. In: Polunin VNC (ed) Aquatic ecosystems. Trends and global prospects. Cambridge University Press, Cambridge, pp 45–61CrossRefGoogle Scholar
  46. Valladares F, Hernandez LG, Dobarro I, Garcia-Perez C, Sanz R, Pugnaire FI (2003) The ratio of leaf to total photosynthetic area influences shade survival and plastic response to light of green-stemmed leguminous shrub seedlings. Ann Bot 91:577–584CrossRefPubMedPubMedCentralGoogle Scholar
  47. Villar L, Sese JA, Ferrández JV (1997) Atlas de la Flora del Pirineo Aragonés. Vol. I. Instituto de Estudios Altoaragoneses y Consejo de Protección de la Naturaleza de Aragón, HuescaGoogle Scholar
  48. Ward JV, Tockner K, Schiemer F (1999) Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regul River 15:125–139CrossRefGoogle Scholar
  49. Willot SJ (1997) Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct Ecol 11:705–713CrossRefGoogle Scholar
  50. Willott SJ, Hassall M (1998) Life-history responses of British grasshoppers (Orthoptera: Acrididae) to temperature change. Funct Ecol 12:232–241CrossRefGoogle Scholar
  51. Wünsch Y, Schirmel J, Fartmann T (2012) Conservation management of coastal dunes for Orthoptera has to consider oviposition and nymphal preferences. J Insect Conserv 16:501–510CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Franz Löffler
    • 1
    • 2
  • Dominik Poniatowski
    • 3
  • Thomas Fartmann
    • 1
    • 2
  1. 1.Department of Biodiversity and Landscape EcologyOsnabrück UniversityOsnabrückGermany
  2. 2.Institute of Biodiversity and Landscape Ecology (IBL)MünsterGermany
  3. 3.DBU Natural Heritage, German Federal Foundation for the EnvironmentOsnabrückGermany

Personalised recommendations