Journal of Insect Conservation

, Volume 20, Issue 3, pp 527–538 | Cite as

Indicative response of Oxysternon festivum Linné (Coleoptera: Scarabaidae) to vegetation condition in the basin of the Orinoco river, Venezuela

  • José R. Ferrer-ParisEmail author
  • Cecilia Lozano
  • Arlene Cardozo-Urdaneta
  • Arianna Thomas Cabianca


A good indicator species should be easy to sample, identify and measure, and be informative about its ecological context. We analysed data from a nation-wide dung beetle survey in Venezuela in order to assess the indicative response of Oxysternon festivum (Coleoptera: Scarabaeinae) to vegetation and climatic condition in the Orinoco river basin. Our approach consisted of two steps: estimating habitat suitability (HS) from historical records and mean environmental conditions, and analysing four different properties measured during a nationwide survey (occurrence, total abundance, individual body size, and total biomass), in relationship with HS and current environmental covariates measured from remote sensors. O. festivum population status could not be completely explained by historical or current conditions alone, but rather by combinations of both. It was strongly associated with forest vegetation, but abundance, biomass and body size increased under harsher (hotter and drier) climatic conditions. Thus, O. festivum seems to be sensitive to changes in vegetation cover, but tolerant to certain levels of perturbance, where it probably replaces other, more sensitive species. Fully understanding the role of O. festivum requires the analysis of its relationships to other species. We strongly recommend the development of similar protocols for the analysis of other potential ecological indicator species, drawing information from historical and contemporary sources and exploiting the available statistical tools to reveal complex patterns. Given the high diversity of dung beetles, and the growing interest in this group, several candidates will probably be found in most tropical countries.


Biodiversity monitoring Environmental niche modelling Guiana shield Mixture model Redundancy analysis 



T Good, A Sanchez-Mercado and H Rojas contributed in the coordination of NeoMaps surveys, and a large group of students and volunteers participated in nation-wide sampling between 2005 and 2010. Funding for NeoMaps was provided by Total Venezuela, S. A. as part of the Program for the Support of the Conservation of the Biodiversity of Venezuela, under the framework of the Ley Orgánica de Ciencia, Tecnología e Innovación (LOCTI), and additional contributions from the Biodiversity Analysis Unit of the Andean Centre for Biodiversity Conservation at Conservation International, the Conservation Technology Support Program, the Venezuelan Fondo Nacional de Ciencia, TecnologÍa e Innovación, Provita and UNESCO. A Solis from INBio, Costa Rica curated the reference collection of NeoMaps and provided taxonomic training for CL. Y Marcano and C Contreras helped with measurement of individuals. J Clavijo, J Camacho and T. R. Barros gently provided assistance at the entomological collections at MIZA, MALUZ and MBLUZ.

Supplementary material

10841_2016_9886_MOESM1_ESM.pdf (206 kb)
Supplementary material 1 (PDF 205 kb)


  1. Alonso LE, McCullough J, Naskrecki P et al (eds) (2008) A rapid biological assessment of the Konashen community owned conservation area, Southern Guyana. RAP bulletin of biological assessment 51. Conservation International, ArlingtonGoogle Scholar
  2. Anderson RP, Gonzalez IJ (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811. doi: 10.1016/j.ecolmodel.2011.04.011 CrossRefGoogle Scholar
  3. Andresen E, Laurance SGW (2007) Possible indirect effects of mammal hunting on dung beetle assemblages in Panama. Biotropica 39:141–146. doi: 10.1111/j.1744-7429.2006.00239.x CrossRefGoogle Scholar
  4. Arnaud P (2002) Les Coléoptères du Monde, the beetles of the world 28. Phanaeini. Hillside Books, CanterburyGoogle Scholar
  5. Bradshaw CJA, Sodhi NS, Brook BW (2009) Tropical turmoil: a biodiversity tragedy in progress. Front Ecol Environ 7:79–87. doi: 10.1890/070193 CrossRefGoogle Scholar
  6. Brambilla M, Ficetola GF (2012) Species distribution models as a tool to estimate reproductive parameters: a case study with a passerine bird species. J Anim Ecol 81:781–787. doi: 10.1111/j.1365-2656.2012.01970.x CrossRefPubMedGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  8. Buse J, Šlachta M, Sladecek FXJ et al (2015) Relative importance of pasture size and grazing continuity for the long-term conservation of European dung beetles. Biol Conserv 187:112–119. doi: 10.1016/j.biocon.2015.04.011 CrossRefGoogle Scholar
  9. Carignan V, Villard MA (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78:45–61. doi: 10.1023/A:1016136723584 CrossRefPubMedGoogle Scholar
  10. Cayuela L, Golicher D, Newton A et al (2009) Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop Conserv Sci 2:319–352Google Scholar
  11. Dale VH, Beyeler SC (2001) Challenges in the development and use of ecological indicators. Ecol Indic 1:3–10. doi: 10.1016/S1470-160X(01)00003-6 CrossRefGoogle Scholar
  12. DeFries RS, Hansen MC, Townshend JRG et al (2000) A new global 1-km dataset of percentage tree cover derived from remote sensing. Glob Chang Biol. doi: 10.1046/j.1365-2486.2000.00296.x Google Scholar
  13. Edmonds W, Zidek J (2004) Revision of the neotropical dung beetle genus Oxysternon (Scarabaeidae: Scarabaeinae: Phanaeini). Folia Heyrovskyana 11:1–58Google Scholar
  14. Fang H, Liang S, McClaran M et al (2005) Biophysical characterization and management effects on semiarid rangeland observed from landsat ETM + data. IEEE Trans Geosci Remote Sens 43:125–134. doi: 10.1109/TGRS.2004.839813 CrossRefGoogle Scholar
  15. Feer F (1999) Effects of dung beetles (Scarabaeidae) on seeds dispersed by howler monkeys (Alouatta seniculus) in the French Guianan rain forest. J Trop Ecol 15:129–142CrossRefGoogle Scholar
  16. Feer F (2000) Les Coléoptères coprophages et -nécrophages de la forêt de Guyanne Française: compostion spécifique et structure des peuplements. Ann la Soc Entomol Fr 36:29–43. doi: 10.1017/CBO9781107415324.004 Google Scholar
  17. Feer F, Pincebourde S (2005) Diel flight activity and ecological segregation within an assemblage of tropical forest dung and carrion beetles. J Trop Ecol 21:21–30. doi: 10.1017/S0266467404002056 CrossRefGoogle Scholar
  18. Ferrer-Paris JR, Rodríguez JP, Good TC et al (2013a) Systematic, large-scale national biodiversity surveys: NeoMaps as a model for tropical regions. Divers Distrib 19:215–231. doi: 10.1111/ddi.12012 CrossRefGoogle Scholar
  19. Ferrer-Paris JR, Sánchez-Mercado A, Paul Rodríguez J (2013b) Optimización del muestreo de invertebrados tropicales: un ejemplo con escarabajos coprófagos (Coleoptera: Scarabaeinae) en Venezuela. Rev Biol Trop (Int J Trop Biol) 61:89–110Google Scholar
  20. Filgueiras BKC, Tabarelli M, Leal IR et al (2015) Dung beetle persistence in human-modified landscapes: combining indicator species with anthropogenic land use and fragmentation-related effects. Ecol Indic 55:65–73. doi: 10.1016/j.ecolind.2015.02.032 CrossRefGoogle Scholar
  21. Gámez J (2004) Phanaeini (Coleoptera: Scarabaeinae) de la cordillera de Los Andes, depresión de Maracaibo y llanos de Venezuela Materiales y Métodos Área de estudio. Memorias la Fund La Salle Ciencias Nat 158:43–60Google Scholar
  22. Gardner TA, Hernández MIM, Barlow J, Peres CA (2007) Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. J Appl Ecol 45:883–893. doi: 10.1111/j.1365-2664.2008.01454.x CrossRefGoogle Scholar
  23. Gardner TA, Barlow J, Araujo IS et al (2008) The cost-effectiveness of biodiversity surveys in tropical forests. Ecol Lett 11:139–150. doi: 10.1111/j.1461-0248.2007.01133.x CrossRefPubMedGoogle Scholar
  24. Gillett CPDT, Gillett MPT, Gillett JEDT, Vaz-de-Mello FZ (2010) Diversity and distribution of the scarab beetle tribe Phanaeini in the northern states of the Brazilian Northeast (Coleoptera: Scarabaeidae: Scarabaeinae). Insecta Mundi 0118:1–19Google Scholar
  25. Halffter G, Edmonds WD (1982) The nesting behavior of dung beetles (Scarabaeinae): an ecological and evolutive approach. Instituto de Ecología, MexicoGoogle Scholar
  26. Halffter G, Matthews EG (1966) The natural history of dung beetles of the subfamily Scarabaeinae. Folia Entomol Mex 12–14:1–312Google Scholar
  27. Hamel-Leigue AC, Herzog SK, Mann DJ et al (2009) Distribución e Historia Natural de Escarabajos Coprófagos de la Tribu Phaneini (Coleoptera: Scarabaeidae: Scarabaeinae) en Bolivia. Kempffiana 5:43–95Google Scholar
  28. Hanski I, Cambefort Y (1991) Beetle ecology. Princeton University Press, New JerseyGoogle Scholar
  29. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol Int J Clim 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  30. Hirzel AH, Le Lay G (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381. doi: 10.1111/j.1365-2664.2008.01524.x CrossRefGoogle Scholar
  31. Holt RD, Lawton JH, Gaston KJ, Blackburn TM (1997) On the relationship between range size and local abundance: back to basics. Oikos 78:183–190. doi: 10.2307/3545815 CrossRefGoogle Scholar
  32. Huete A, Didan K, Miura T et al (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213CrossRefGoogle Scholar
  33. Hunt J, Simmons LW (2001) Status-dependent selection in the dimorphic beetle Onthophagus taurus. Proc R Soc Lond Ser B 268:2409–2414. doi: 10.1098/rspb.2001.1758 CrossRefGoogle Scholar
  34. IAvH (2013) Escarabajos coprófagos (Coleoptera:Scarabaeidae:Scarabaeinae) de bosques secos colombianos en la Colección Entomológica del Instituto Alexander von Humboldt. In: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Accessed 13 Sep 2013
  35. Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18:299–305. doi: 10.1016/s0169-5347(03)00071-5 CrossRefGoogle Scholar
  36. Larsen TH, Lopera A, Forsyth A (2008) Understanding trait-dependent community disassembly: dung beetles, density functions, and forest fragmentation. Conserv Biol 22:1288–1298. doi: 10.1111/j.1523-1739.2008.00969.x CrossRefPubMedGoogle Scholar
  37. Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  38. Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277. doi: 10.1111/j.2041-210X.2010.00078.x CrossRefGoogle Scholar
  39. Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349(80):827–832. doi: 10.1126/science.aaa9932 CrossRefPubMedGoogle Scholar
  40. Lindenmayer DB, Likens GE (2010) The science and application of ecological monitoring. Biol Conserv 143:1317–1328. doi: 10.1016/j.biocon.2010.02.013 CrossRefGoogle Scholar
  41. Martin TG, Wintle BA, Rhodes JR et al (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1235–1246. doi: 10.1111/j.1461-0248.2005.00826.x CrossRefPubMedGoogle Scholar
  42. McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73:181–201. doi: 10.1111/j.1469-185X.1997.tb00029.x CrossRefGoogle Scholar
  43. Medina CA, Lopera-Toro A, Vítolo A, Gill B (2001) Escarabajos Coprófagos (Coleoptera: Scarabaeidae: Scarabaeinae) de Colombia. Biota Colomb 2:131–144Google Scholar
  44. Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800CrossRefGoogle Scholar
  45. Nichols ES, Gardner TA (2011) Dung beetles as a candidate study taxon in applied biodiversity conservation research. In: Ridsdill-Smith TJ, Simmons LW (eds) Ecology and evolution of dung beetles. Wiley, Oxford, pp 267–292CrossRefGoogle Scholar
  46. Nichols E, Spector S, Louzada J et al (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474. doi: 10.1016/j.biocon.2008.04.011 CrossRefGoogle Scholar
  47. Nichols E, Gardner TA, Peres CA, Spector S (2009) Co-declining mammals and dung beetles: an impending ecological cascade. Oikos 118:481–487CrossRefGoogle Scholar
  48. Nichols L, Uriarte M, Bunker DE et al (2013) Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94:180–189CrossRefPubMedGoogle Scholar
  49. Nielsen SE, Johnson CJ, Heard DC, Boyce MS (2005) Can models of presence-absence be used to scale abundance? Two case studies considering extremes in life history. Ecography (Cop) 28:197–208CrossRefGoogle Scholar
  50. O’Shea BJ, LE Alonso, Larsen TH (eds) (2011) A rapid biological assessment of the Kwamalasamutu region, Southwestern Suriname. RAP bulletin of biological assessment 63. Conservation International, ArlingtonGoogle Scholar
  51. ORNL DAAC (2012) MODIS subsetted land products, collection 5. In: Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). Oak Ridge. Accessed 8 Aug 2015
  52. Pacheco TL, Vaz-De-Mello FZ (2015) Dung beetles of the tribe Phanaeini (Coleoptera: Scarabaeidade: Scarabaeinae) from Roraima state, Northern Brazil: checklist and key to species. Biota Neotrop 15:1–9. doi: 10.1590/1676-06032015014514 CrossRefGoogle Scholar
  53. Philips K, Pretorius E, Scholtz C (2004) A phylogenetic analysis of dung beetles (Scarabaeinae: Scarabaeidae): unrolling an evolutionary history. Invertebr Syst 18:53–88. doi: 10.1071/IS03030 CrossRefGoogle Scholar
  54. Price DL (2009) Phylogeny and biogeography of the dung beetle genus Phanaeus (Coleoptera: Scarabaeidae). Syst Entomol 34:137–150. doi: 10.1111/j.1365-3113.2008.00443.x CrossRefGoogle Scholar
  55. Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643. doi: 10.1111/jbi.12227 CrossRefGoogle Scholar
  56. Radtke MG, Da Fonseca CRV, Williamson GB (2010) Dung beetle communities: a neotropical-north temperate comparison. Neotrop Entomol 39:19–27. doi: 10.1590/s1519-566x2010000100004 CrossRefPubMedGoogle Scholar
  57. Rowland JM, Emlen DJ (2009) Two thresholds, three male forms result in facultative male trimorphism in beetles. Science 323:773–776CrossRefPubMedGoogle Scholar
  58. Siddig AAH, Ellison AM, Ochs A et al (2016) How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in ecological indicators. Ecol Indic 60:223–230. doi: 10.1016/j.ecolind.2015.06.036 CrossRefGoogle Scholar
  59. Silvius KM, Fragoso JMV (2002) Pulp handling by vertebrate seed dispersers increases palm seed predation by bruchid beetles in the northern Amazon. J Ecol 90:1024–1032. doi: 10.1046/j.1365-2745.2002.00728.x CrossRefGoogle Scholar
  60. Smallegange IM, Johansson J (2014) Life-history differences favor evolution of male dimorphism in competitive games. Am Nat 183:188–198. doi: 10.1086/674377 CrossRefPubMedGoogle Scholar
  61. Taborsky M, Brockmann HJ (2010) Alternative reproductive tactics and life history phenotypes. In: Kappeler P (ed) Animal behaviour: evolution and mechanisms. Springer, Berlin, pp 537–586CrossRefGoogle Scholar
  62. Tjur T (2009) Coefficients of determination in logistic regression models—a new proposal: the coefficient of discrimination. Am Stat 63:366–372. doi: 10.1198/tast.2009.08210 CrossRefGoogle Scholar
  63. Tomkins J, Hazel W (2011) Explaining phenotypic diversity: the conditional strategy and threshold trait expression. In: Ridsdill-Smith TJ, Simmons LW (eds) Ecology and evolution of dung beetles. Wiley, Oxford, pp 107–125CrossRefGoogle Scholar
  64. VanDerWal J, Shoo LP, Johnson CN, Williams SE (2009) Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am Nat 174:282–291. doi: 10.1086/600087 CrossRefPubMedGoogle Scholar
  65. Vaughan IP, Ormerod SJ (2005) The continuing challenges of testing species distribution models. J Appl Ecol 42:720–730. doi: 10.1111/j.1365-2664.2005.01052.x CrossRefGoogle Scholar
  66. Vaz-De-Mello FZ, Edmonds WD, Ocampo FC, Schoolmeesters P (2011) A multilingual key to the genera and subgenera of the subfamily Scarabaeinae of the New World (Coleoptera: Scarabaeidae). Zootaxa 73:1–73Google Scholar
  67. Wan Z, Zhang Y, Zhang Q, Li Z-L (2004) Quality assessment and validation of the MODIS land surface temperature. Int J Remote Sens 25:261–274CrossRefGoogle Scholar
  68. Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342CrossRefPubMedGoogle Scholar
  69. Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Stat Softw 27:1–25Google Scholar
  70. Zhang X, Friedl MA, Schaaf CB et al (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475. doi: 10.1016/S0034-4257(02)00135-9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • José R. Ferrer-Paris
    • 1
    Email author
  • Cecilia Lozano
    • 1
  • Arlene Cardozo-Urdaneta
    • 1
  • Arianna Thomas Cabianca
    • 2
  1. 1.Centro de Estudios Botánicos y AgroforestalesInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela
  2. 2.Centro de EcologíaInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela

Personalised recommendations