Journal of Insect Conservation

, Volume 19, Issue 5, pp 999–1010 | Cite as

Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth

  • Rachel E. MallingerEmail author
  • Peter Werts
  • Claudio Gratton


Pesticides are implicated in current bee declines. Wild bees that nest or forage within agroecosystems may be exposed to numerous pesticides applied throughout their life cycles, with potential additive or synergistic effects. In pollinator-dependent crops, pesticides may reduce bee populations, creating trade-offs between pest management and crop pollination. In this three-year study, we examined the effects of pesticides on the abundance and species richness of wild bees within apple orchards of southern Wisconsin. We additionally deployed colonies of Bombus impatiens, a native and common species, in order to relate colony performance to orchard pesticide use. Utilizing grower spray records, we developed “toxicity scores” as a continuous index of pesticide use for each orchard, a measure that incorporated each pesticide’s relative toxicity to bees, its residual activity, and its application rate. While there was no relationship between total wild bee abundance and species richness with toxicity scores, there was a significant, negative effect on sweat bees, Lasioglossum spp. Many of these sweat bees are small-bodied, have short foraging ranges, are social, and have long foraging periods, all traits that could increase bee exposure or sensitivity to orchard pesticides. In addition, sentinel bumble bee colonies at orchards with high toxicity scores produced fewer, and smaller, workers. Bumble bees may also have a greater sensitivity and exposure to orchard pesticides due to their sociality and long foraging periods. Our results demonstrate that certain bee taxa may have a higher exposure or sensitivity to on-farm pesticide applications, and could therefore be vulnerable in agroecosystems.


Toxicity Native bee Bombus Apple Orchard Pest management Organic 



The authors would like to thank Mike Arduser and Jason Gibbs for assistance in identifying bees, Dr. Tom Green for his expertise and helpful comments, The Wisconsin Apple Growers Association, and the United States Department of Agriculture Specialty Crop Block Grant Program for funding.

Supplementary material

10841_2015_9816_MOESM1_ESM.pdf (289 kb)
Supplementary material 1 (PDF 288 kb)
10841_2015_9816_MOESM2_ESM.pdf (145 kb)
Supplementary material 2 (PDF 144 kb)
10841_2015_9816_MOESM3_ESM.pdf (136 kb)
Supplementary material 3 (PDF 135 kb)


  1. Abbott VA, Nadeau JL, Higo HA, Winston ML (2008) Lethal and sublethal effects of Imidacloprid on Osmia lignaria and Clothianidin on Megachile rotundata (Hymenoptera: Megachilidae). J Econ Entomol 101:784–796. doi:10.1603/0022-0493(2008)101[784:LASEOI]2.0.CO;2CrossRefPubMedGoogle Scholar
  2. Andersson GKS, Rundlöf M, Smith HG (2012) Organic farming improves pollination success in strawberries. PLoS one 7:e31599. doi: 10.1371/journal.pone.0031599 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Arena M, Sgolastra F (2014) A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23:324–334. doi: 10.1007/s10646-014-1190-1 CrossRefPubMedGoogle Scholar
  4. Baron GL, Raine NE, Brown MJF (2014) Impact of chronic exposure to a pyrethroid pesticide on bumblebees and interactions with a trypanosome parasite. J Appl Ecol 51:460–469. doi: 10.1111/1365-2664.12205 CrossRefGoogle Scholar
  5. Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354. doi: 10.1126/science.1127863 CrossRefPubMedGoogle Scholar
  6. Brittain C, Potts SG (2011) The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl Ecol 12:321–331CrossRefGoogle Scholar
  7. Brittain C, Bommarco R, Vighi M et al (2010) Organic farming in isolated landscapes does not benefit flower-visiting insects and pollination. Biol Conserv 143:1860–1867. doi: 10.1016/j.biocon.2010.04.029 CrossRefGoogle Scholar
  8. Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615. doi: 10.1126/science.1232728 CrossRefPubMedGoogle Scholar
  9. Burnham KP, Anderson DR (eds) (2004) Model selection and multimodel inference. Springer, New YorkGoogle Scholar
  10. Colla SR, Packer L (2008) Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodivers Conserv 17:1379–1391. doi: 10.1007/s10531-008-9340-5 CrossRefGoogle Scholar
  11. Cresswell JE (2011) A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20:149–157. doi: 10.1007/s10646-010-0566-0 CrossRefPubMedGoogle Scholar
  12. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. doi: 10.1146/annurev.ento.52.110405.091440 CrossRefPubMedGoogle Scholar
  13. Eilers EJ, Kremen C, Smith Greenleaf S et al (2011) Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS one 6:e21363. doi: 10.1371/journal.pone.0021363 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Eshenaur B, Grant J, Kovach J, et al (2010) Environmental impact quotient: “a method to measure the environmental impact of pesticides.” New York State Integrated Pest Management Program, Cornell Cooperative Extension, Cornell University.
  15. Fauser-Misslin A, Sadd BM, Neumann P, Sandrock C (2014) Influence of combined pesticide and parasite exposure on bumblebee colony traits in the laboratory. J Appl Ecol 51:450–459. doi: 10.1111/1365-2664.12188 CrossRefGoogle Scholar
  16. Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821. doi: 10.1016/j.ecolecon.2008.06.014 CrossRefGoogle Scholar
  17. Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611. doi: 10.1126/science.1230200 CrossRefPubMedGoogle Scholar
  18. Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71:757–764. doi: 10.1046/j.1365-2656.2002.00641.x CrossRefGoogle Scholar
  19. Gels JA, Held DW, Potter DA (2002) Hazards of insecticides to the bumble bees Bombus impatiens (Hymenoptera: Apidae) foraging on flowering white clover in turf. J Econ Entom 95:722–728. doi: 10.1603/0022-0493-95.4.722 CrossRefPubMedGoogle Scholar
  20. Gibbs J (2011) Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 3073:1–216Google Scholar
  21. Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–108. doi: 10.1038/nature11585 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596. doi: 10.1007/s00442-007-0752-9 CrossRefPubMedGoogle Scholar
  23. Henry M, Béguin M, Requier F et al (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350. doi: 10.1126/science.1215039 CrossRefPubMedGoogle Scholar
  24. Holzschuh A, Steffan-Dewenter I, Kleijn D, Tscharntke T (2007) Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. J Appl Ecol 44:41–49. doi: 10.1111/j.1365-2664.2006.01259.x CrossRefGoogle Scholar
  25. Holzschuh A, Steffan-Dewenter I, Tscharntke T (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361. doi: 10.1111/j.2007.0030-1299.16303.x CrossRefGoogle Scholar
  26. Holzschuh A, Steffan-Dewenter I, Tscharntke T (2010) How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J Anim Ecol 79:491–500. doi: 10.1111/j.1365-2656.2009.01642.x CrossRefPubMedGoogle Scholar
  27. Kennedy CM, Lonsdorf E, Neel MC et al (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599. doi: 10.1111/ele.12082 CrossRefPubMedGoogle Scholar
  28. Kovach J, Petzoldt C, Degni J, Tette J (1992) A method to measure the environmental impact of pesticides. New York food and life sciences Bulletin Number 139. Cornell University, New YorkGoogle Scholar
  29. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. PNAS 99:16812–16816. doi: 10.1073/pnas.262413599 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kremen C, Williams NM, Bugg RL et al (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol Lett 7:1109–1119. doi: 10.1111/j.1461-0248.2004.00662.x CrossRefGoogle Scholar
  31. Ladurner E, Bosch J, Kemp WP, Maini S (2005) Assessing delayed and acute toxicity of five formulated fungicides to Osmia lignaria Say and Apis mellifera. Apidologie 36:449–460. doi: 10.1051/apido:2005032 CrossRefGoogle Scholar
  32. Larson JL, Redmond CT, Potter DA (2013) Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns. PLoS one 8:e66375. doi: 10.1371/journal.pone.0066375 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Mallinger RE, Gratton C (2015) Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator-dependent crop. J Appl Ecol 52:323–330. doi: 10.1111/1365-2664.12377 CrossRefGoogle Scholar
  34. Malone LA, Phyllis E, Burgess J et al (2000) Effects of four protease inhibitors on the survival of worker bumblebees, Bombus terrestris L. Apidologie 31:25–38. doi: 10.1051/apido:2000104 CrossRefGoogle Scholar
  35. Michener CD (1974) The social behavior of the bees: a comparative study. Harvard University Press, CambridgeGoogle Scholar
  36. Michener CD (2000) The bees of the world. JHU Press, BaltimoreGoogle Scholar
  37. Mommaerts V, Reynders S, Boulet J et al (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19:207–215. doi: 10.1007/s10646-009-0406-2 CrossRefPubMedGoogle Scholar
  38. Morandin LA, Winston ML (2003) Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ Entomol 32:555–563. doi: 10.1603/0046-225X-32.3.555 CrossRefGoogle Scholar
  39. Morandin LA, Winston ML, Franklin MT, Abbott VA (2005) Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson). Pest Manag Sci 61:619–626. doi: 10.1002/ps.1058 CrossRefPubMedGoogle Scholar
  40. National Research Council (U.S) Committee on the Status of Pollinators in North America (2007) Status of pollinators in North America. National Academies Press, WashingtonGoogle Scholar
  41. Osborne JI, Clark SJ, Morris RJ et al (1999) A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J Appl Ecol 36:519–533. doi: 10.1046/j.1365-2664.1999.00428.x CrossRefGoogle Scholar
  42. Park MG, Blitzer EJ, Gibbs J et al (2015) Negative effects of pesticides on wild bee communities can be buffered by landscape context. P Roy Soc B Biol Sci 282:20150299. doi: 10.1098/rspb.2015.0299 CrossRefGoogle Scholar
  43. Pettis JS, Lichtenberg EM, Andree M et al (2013) Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8:e70182. doi: 10.1371/journal.pone.0070182 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Pilling ED, Jepson PC (1993) Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic Sci 39:293–297. doi: 10.1002/ps.2780390407 CrossRefGoogle Scholar
  45. Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi: 10.1016/j.tree.2010.01.007 CrossRefPubMedGoogle Scholar
  46. Rundlöf M, Andersson GKS, Bommarco R et al (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80. doi: 10.1038/nature14420 CrossRefPubMedGoogle Scholar
  47. Shuler R, Roulston T, Farris G (2005) Farming practices influence wild pollinator populations on squash and pumpkin. J Econ Entomol 98:790–795. doi: 10.1603/0022-0493-98.3.790 CrossRefPubMedGoogle Scholar
  48. Tasei JN, Ripault G, Rivault E (2001) Hazards of imidacloprid seed coating to Bombus terrestris (Hymenoptera: Apidae) when applied to sunflower. J Econ Entomol 94:623–627. doi: 10.1603/0022-0493-94.3.623 CrossRefPubMedGoogle Scholar
  49. Thompson HM, Hunt LV (1999) Extrapolating from honeybees to bumblebees in pesticide risk assessment. Ecotoxicology 8:147–166. doi: 10.1023/A:1026444029579 CrossRefGoogle Scholar
  50. Tuell JK, Isaacs R (2010) Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop. J Econ Entomol 103:668–675. doi: 10.1603/EC09314 CrossRefPubMedGoogle Scholar
  51. Wahl O, Ulm K (1983) Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica. Oecologia 59:106–128. doi: 10.1007/BF00388082 CrossRefPubMedGoogle Scholar
  52. Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352. doi: 10.1126/science.1215025 CrossRefPubMedGoogle Scholar
  53. Williams NM, Crone EE, Roulston TH et al (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291. doi: 10.1016/j.biocon.2010.03.024 CrossRefGoogle Scholar
  54. Williams NM, Regetz J, Kremen C (2012) Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 93:1049–1058. doi: 10.1890/11-1006.1 CrossRefPubMedGoogle Scholar
  55. Williamson SM, Wright GA (2013) Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J Exp Biol 216:1799–1807. doi: 10.1242/jeb.083931 PubMedCentralCrossRefPubMedGoogle Scholar
  56. Wu JY, Anelli CM, Sheppard WS (2011) Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS one 6:e14720. doi: 10.1371/journal.pone.0014720 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Yang EC, Chuang YC, Chen YL, Chang LH (2008) Abnormal foraging behavior induced by sublethal dosage of Imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101:1743–1748. doi: 10.1603/0022-0493-101.6.1743 CrossRefPubMedGoogle Scholar
  58. Zhu W, Schmehl DR, Mullin CA, Frazier JL (2014) Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS one 9:e77547. doi: 10.1371/journal.pone.0077547 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA)  2015

Authors and Affiliations

  • Rachel E. Mallinger
    • 1
    • 3
    Email author
  • Peter Werts
    • 2
  • Claudio Gratton
    • 1
  1. 1.Department of EntomologyUniversity of Wisconsin MadisonMadisonUSA
  2. 2.IPM Institute of North America, Inc.MadisonUSA
  3. 3.USDA-ARSFargoUSA

Personalised recommendations