Journal of Insect Conservation

, Volume 19, Issue 5, pp 901–910 | Cite as

Range increase of a Neotropical orchid bee under future scenarios of climate change

  • Daniel P. Silva
  • Ana C. B. A. Macêdo
  • John S. Ascher
  • Paulo De MarcoJr.


Along with other human impacts, climate change is an important driver of biological changes worldwide and is expected to severely affect species distributions. Although dramatic range shifts and contractions are predicted for many taxa occurring at higher latitudes, including bumble bees, the response of widespread tropical species is less clear due in part to scarcity of reliable occurrence data. Newly mobilized specimen records and improved species distribution models facilitate more robust assessment of future climate effects under various scenarios. Here, we predict both current and future distribution of the orchid bee Eulaema nigrita Lepeletier, 1841 (Apidae: Euglossinae), a large-bodied species widely distributed in the Neotropics whose populations within the Amazon region are believed to be controlled by cleptoparasitic Euglossini bees, such as Exaerete smaragdina Guérin-Menéville, 1844 and Aglae caerulea Lepeletier and Serville, 1825. Under both current and future scenarios of climate change, El. nigrita is expected to persist in deforested areas including those that might suffer desertification. While under current climatic conditions this species is not expected to occur in central Amazonia where the forest is still conserved, its range is expected to increase under future scenarios of climate change, especially in areas corresponding to the arc of deforestation in eastern Amazonia. The increase of human-related disturbances in this biome, as well as changes in the relationship of El. nigritaEx. smaragdina and El. nigritaA. caerulea may explain the potential range increase of El. nigrita under future scenarios of climate change.


Amazon Brazil Climate change Euglossini Deforestation Species distribution models 



The authors are in debt to Dr. André Nemésio, who kindly revised our occurrence dataset and suggested the inclusion and removal of doubtful records from our analyses and to two anonymous reviewers who provided important suggestions to a previous version of this manuscript. DPS received a doctorate scholarship from Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (147204/2010-0). PDMJ have been continuously supported by CNPq grants. DPS and PDMJ also thank CNPq (477639/2010-0), Fundação “O Boticário” de Proteção à Natureza (0880/2010-2), and Whitley Wildlife Conservation Trust for the resources which allowed them to execute field surveys in the Cerrado from the state of Goiás. They are also grateful to Dário P. Silva Jr., Mírian Cristina de Almeida, and Fábio Martins Vilar de Carvalho and several others for their help during the field campaigns. Data acquisition on Euglossini records at the American Museum of Natural History by JSA with help from HH Go, A Pfister, M Tuell, and ES Wyman was supported by RG Goelet and NSF-DBI #0956388 (P.I. JS Ascher, co-P.I.s JG Rozen Jr., and D Yanega).

Supplementary material

10841_2015_9807_MOESM1_ESM.doc (117 kb)
Supplementary material 1 (DOC 117 kb)


  1. Aguiar WM, Sofia SH, Melo GAR, Gaglianone MC (2015) Changes in orchid bee communities across forest-agroecosystem boundaries in Brazilian Atlantic Forest landscapes. Environ Entomol. doi: 10.1093/ee/nvv130 PubMedGoogle Scholar
  2. Aiello-Lammens ME, Boria RA, Radosavljevic A et al (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545CrossRefGoogle Scholar
  3. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, Kappa and the True Skill Statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  4. Almeida MC, Côrtes LG, De Marco P Jr (2010) New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae). Insect Conserv Divers 3:252–256CrossRefGoogle Scholar
  5. Araújo MB, Pearson RG (2005) Equilibrium of species’ distributions with climate. Ecography 28:693–695CrossRefGoogle Scholar
  6. Arribas P, Abellán P, Velasco J et al (2012) Evaluating drivers of vulnerability to climate change: a guide for insect conservation strategies. Glob Change Biol 18:2135–2146CrossRefGoogle Scholar
  7. Ballesteros-Mejia L, Kitching IJ, Jetz W et al (2013) Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingid moths. Glob Ecol Biogeogr 22:586–595CrossRefGoogle Scholar
  8. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338CrossRefGoogle Scholar
  9. Bartomeus I, Ascher JS, Wagner D et al (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci USA 108:20645–20649PubMedCentralPubMedCrossRefGoogle Scholar
  10. Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77CrossRefGoogle Scholar
  11. Brienen RJW, Phillips OL, Feldpausch TR et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348PubMedCrossRefGoogle Scholar
  12. Chapin FS, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242PubMedCrossRefGoogle Scholar
  13. De Marco P Jr, Vianna DM (2005) Distribuição do esforço de coleta de Odonata no Brasil: subsídios para escolha de áreas prioritárias para levantamentos faunísticos. Lundiana 6:13–26Google Scholar
  14. De Oliveira G, Rangel TF, Lima-Ribeiro MS et al (2014) Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography 37:637–647CrossRefGoogle Scholar
  15. De Siqueira MF, Durigan G, De Marco P Jr, Peterson AT (2009) Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. J Nat Conserv 17:25–32CrossRefGoogle Scholar
  16. Diniz-Filho JAF, De Marco P Jr, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3:172–179Google Scholar
  17. Domisch S, Araújo MB, Bonada N et al (2013) Modelling distribution in European stream macroinvertebrates under future climates. Glob Change Biol 19:752–762CrossRefGoogle Scholar
  18. Dressler RL (1982) Biology of the orchid bees (Euglossini). Annu Rev Ecol Syst 13:373–394CrossRefGoogle Scholar
  19. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697CrossRefGoogle Scholar
  20. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  21. Evangelista PH, Kumar S, Stohlgren TJ et al (2008) Modelling invasion for a habitat generalist and a specialist plant species. Divers Distrib 14:808–817CrossRefGoogle Scholar
  22. Faria LRR, Silveira FA (2011) The orchid bee fauna (Hymenoptera, Apidae) of a core area of the Cerrado, Brazil: the role of riparian forests as corridors for forest-associated bees. Biota Neotrop 11:87–94CrossRefGoogle Scholar
  23. Fearnside PM (2001) Soybean cultivation as a threat to the environment in Brazil. Environ Conserv 28:23–38Google Scholar
  24. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  25. Foley JA, Defries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  26. Forrest JRK (2015) Plant-pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos 124:4–13CrossRefGoogle Scholar
  27. Giannini TC, Acosta AL, Garófalo CA et al (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Model 244:127–131CrossRefGoogle Scholar
  28. Giannini TC, Acosta AL, Silva CI et al (2013) Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agric Ecosyst Environ 171:39–46CrossRefGoogle Scholar
  29. Gonçalves RB, Sydney NV, Oliveira PS, Artmann NO (2014) Bee and wasp responses to a fragmented landscape in southern Brazil. J Insect Conserv 18:1193–1201CrossRefGoogle Scholar
  30. Graham CH, Ferrier S, Huettman F et al (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503PubMedCrossRefGoogle Scholar
  31. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  32. Hegland SJ, Nielsen A, Lázaro A et al (2009) How does climate warming affect plant–pollinator interactions? Ecol Lett 12:184–195PubMedCrossRefGoogle Scholar
  33. Henle K, Davies KF, Kleyer M et al (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251CrossRefGoogle Scholar
  34. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  35. Hughes I, Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61PubMedCrossRefGoogle Scholar
  36. Jarnevich CS, Stohlgren TJ, Kumar S et al (2015) Caveats for correlative species distribution modeling. Ecol Inform 29:6–15CrossRefGoogle Scholar
  37. Jiménez-Valverde A, Peterson AT, Soberón J et al (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797CrossRefGoogle Scholar
  38. Kamino LHY, Stehmann JR, Amaral S et al (2011) Challenges and perspectives for species distribution modelling in the neotropics. Biol Lett 8:324–326PubMedCentralPubMedCrossRefGoogle Scholar
  39. Kramer-Schadt S, Niedballa J, Pilgrim JD et al (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379CrossRefGoogle Scholar
  40. Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  41. Liu C, White M, Newell G (2011) Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography 34:232–243CrossRefGoogle Scholar
  42. Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151CrossRefGoogle Scholar
  43. Malhi Y, Roberts JT, Betts RA et al (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172PubMedCrossRefGoogle Scholar
  44. Martínez-Meyer E, Díaz-Porras D, Peterson A, Yáñez-Arenas C (2013) Ecological niche structure and rangewide abundance patterns of species. Biol Lett 9:20120637. doi: 10.1098/rsbl.2012.0637 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Martins AC, Silva DP, De Marco P Jr, Melo GAR (2015) Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. J Insect Conserv 19:33–43CrossRefGoogle Scholar
  46. Maués MM, Oliveira PEAM, Kanashiro M (2008) Pollination biology in Jacaranda copaia (Aubl.) D. Don. (Bignoniaceae) at the “Floresta Nacional do Tapajós”, Central Amazon, Brazil. Rev Bras Botânica 31:517–527CrossRefGoogle Scholar
  47. McKinney ML (1997) Extinction vulnerability and selection: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516CrossRefGoogle Scholar
  48. Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717PubMedCrossRefGoogle Scholar
  49. Memmott J, Carvell C, Pywell RF, Craze PG (2010) The potential impact of global warming on the efficacy of field margins sown for the conservation of bumble-bees. Philos Trans R Soc B Biol Sci 365:2071–2079CrossRefGoogle Scholar
  50. Milet-Pinheiro P, Schlindwein C (2005) Do euglossine males (Apidae, Euglossini) leave tropical rainforest to collect fragrances in sugar cane monocultures? Rev Bras Zool 22:853–858CrossRefGoogle Scholar
  51. Moline MA, Claustre H, Frazer TK et al (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1973–1980CrossRefGoogle Scholar
  52. Morato EF (1992) Abelhas euglossini (Hymenoptera, Apidae) coletadas na Amazônia Central. Rev Bras Entomol 36:767–771Google Scholar
  53. Morato EF (1994) Abundância e riqueza de machos de Euglossini (Hymenoptera: Apidae) em mata de terra firme e áreas de derrubada, nas vizinhanças de Manaus (Brasil). Bol do Mus Para Emílio Goeldi 10:95–105Google Scholar
  54. Morato EF (1998) Estudos sobre comunidades de abelhas Euglossini. Anais do III Encontro sobre Abelhas de Ribeirão Preto. Ribeirão Preto, São Paulo, pp 135–143Google Scholar
  55. Moure JS (1967) Descrição de algumas espécies de Euglossine (Hym. Apoidea). Atlas Simp Biota Amaz 55:373–394Google Scholar
  56. Moure JS (2003) As espécies do gênero Eulaema Lepeletier, 1841 (Hymenoptera, Apidae, Euglossinae). Acta Biol Parana 29:1–70Google Scholar
  57. Muscarella R, Galante PJ, Soley-Guardia M et al (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205CrossRefGoogle Scholar
  58. Myers JG (1935) Ethological observations on the citrus bee, Trigona silvestriana Vachal, and other neotropical bees (Hym. Apoidea). Trans R Entomol Soc Lond 83:131–142CrossRefGoogle Scholar
  59. Nemésio A (2009) Orchid bees (Hymenoptera: Apidae) of the Brazilian Atlantic forest. Zootaxa 2041:1–242Google Scholar
  60. Nemésio A (2011) Euglossa marianae sp. n. (Hymenoptera: Apidae): a new orchid bee from the Brazilian Atlantic Forest and the possible first documented local extinction of a forest-dependent orchid bee. Zootaxa 2892:59–68Google Scholar
  61. Nemésio A (2013a) Are orchid bees at risk? First comparative survey suggests declining populations of forest-dependent species. Braz J Biol 73:367–374PubMedCrossRefGoogle Scholar
  62. Nemésio A (2013b) The orchid-bee faunas (Hymenoptera: Apidae) of “Parque Nacional do Monte Pascoal”, “Parque Nacional do Descobrimento” and three other Atlantic Forest remnants in southern Bahia, eastern Brazil. Braz J Biol 73:437–446PubMedCrossRefGoogle Scholar
  63. Nemésio A, Faria-Junior LRR (2004) First assessment of the orchid-bee fauna (Hymenoptera: Apidae) at Parque Estadual do Rio Preto, a cerrado area in southeastern. Lundiana 5:113–117Google Scholar
  64. Nemésio A, Silveira FA (2006a) Deriving ecological relationships from geographical correlations between host and parasitic species: an example with orchid bees. J Biogeogr 33:91–97CrossRefGoogle Scholar
  65. Nemésio A, Silveira FA (2006b) Edge effects on the orchid-bee fauna (Hymenoptera: Apidae) at a large remnant of Atlantic Rain Forest in southeastern Brazil. Neotrop Entomol 35:313–323PubMedCrossRefGoogle Scholar
  66. Nemésio A, Cerântola NCM, Vasconcelos HL et al (2012) Searching for Euglossa cyanochlora Moure, 1996 (Hymenoptera: Apidae), one of the rarest bees in the world. J Insect Conserv 16:745–755CrossRefGoogle Scholar
  67. Newbold T (2010) Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog Phys Geogr 34:3–22CrossRefGoogle Scholar
  68. Nóbrega CC, De Marco P Jr (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505CrossRefGoogle Scholar
  69. Oliveira ML (2008) Catálogo comentado das espécies de abelhas do gênero Eulaema Lepeletier, 1841 (Hymenoptera: Apidae). Lundiana 8:113–136Google Scholar
  70. Oyama MD, Nobre CA (2003) A new climate-vegetation equilibrium state for Tropical South America. Geophys Res Lett 30:2199CrossRefGoogle Scholar
  71. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  72. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  73. Peruquetti RC, Campos LAO, Coelho CDP et al (1999) Abelhas euglossini (Apidae) de áreas de Mata Atlântica: abundância, riqueza e aspectos biológicos. Rev Bras Zool 16:101–118CrossRefGoogle Scholar
  74. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  75. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  76. Rafferty NE, CaraDonna PJ, Bronstein JL (2015) Phenological shifts and the fate of mutualisms. Oikos 124:14–21PubMedCentralPubMedCrossRefGoogle Scholar
  77. Rangel TF, Loyola RD (2012) Labeling ecological niche models. Nat Conserv 10:119–126CrossRefGoogle Scholar
  78. Rasmont P, Franzén M, Lecocq T et al (2015) Climatic risk and distribution atlas of European bumblebees, 1st edn. Pensoft Publishers, SofiaGoogle Scholar
  79. Rebêlo JMM, Silva FS (1999) Distribuição das abelhas Euglossini (Hymenoptera: Apidae) no estado do Maranhão, Brasil. An da Soc Entomológica do Bras 28:389–401CrossRefGoogle Scholar
  80. Reddy S, Davalos LM (2003) Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr 30:1719–1727CrossRefGoogle Scholar
  81. Root TL, Price JT, Hall KR et al (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60PubMedCrossRefGoogle Scholar
  82. Schuh RT, Hewson-Smith S, Ascher JS (2010) Specimen databases: a case study in entomology using web-based software. Am Entomol 56:206–216CrossRefGoogle Scholar
  83. Schweiger O, Heikkinen RK, Harpke A et al (2012) Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob Ecol Biogeogr 21:88–99CrossRefGoogle Scholar
  84. Serra BDV, De Marco P Jr, Nóbrega CC, Campos LAO (2012) Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 (Hymenoptera, Apidae): conserving isolated populations in mountain habitats. Nat Conserv 10:199–206CrossRefGoogle Scholar
  85. Silva DP, De Marco PJ (2014) No evidence of habitat loss affecting the orchid bees Eulaema nigrita Lepeletier and Eufriesea auriceps Friese (Apidae: Euglossini) in the Brazilian Cerrado Savanna. Neotrop Entomol 43:509–518CrossRefGoogle Scholar
  86. Silva DP, Aguiar AJC, Melo GAR et al (2013) Amazonian species within the Cerrado savanna: new records and potential distribution for Aglae caerulea (Apidae: Euglossini). Apidologie 44:673–683CrossRefGoogle Scholar
  87. Silva DP, Gonzalez VH, Melo GAR et al (2014) Seeking the flowers for the bees: integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecol Model 273:200–209CrossRefGoogle Scholar
  88. Silva DP, Varela S, Nemésio A, De Marco P Jr (2015) Adding biotic interactions into paleodistribution models: a host-cleptoparasite complex of Neotropical orchid bees. PLoS One 10:e0129890. doi: 10.1371/journal.pone.0129890 PubMedCentralPubMedCrossRefGoogle Scholar
  89. Skov F, Svenning J-C (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27:366–380CrossRefGoogle Scholar
  90. Soares-Filho BS, Nepstad DC, Curran LM et al (2006) Modelling conservation in the Amazon basin. Nature 440:520–523PubMedCrossRefGoogle Scholar
  91. Sousa-Baena MS, Garcia LC, Peterson AT (2014) Knowledge behind conservation status decisions: data basis for “Data Deficient” Brazilian plant species. Biol Conserv 173:80–89CrossRefGoogle Scholar
  92. Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13CrossRefGoogle Scholar
  93. Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148PubMedCrossRefGoogle Scholar
  94. Tonhasca A Jr, Blackmer JL, Albuquerque GS (2002) Abundance and diversity of euglossine bees in the fragmented landscape of the Brazilian Atlantic forest. Biotropica 34:416–422CrossRefGoogle Scholar
  95. Tôrres NM, De Marco P Jr, Santos T et al (2012) Can species distribution modelling provide estimates of population densities? A case study with jaguars in the Neotropics. Divers Distrib 18:615–627CrossRefGoogle Scholar
  96. Tougou D, Musolin DL, Fujisaki K (2009) Some like it hot! Rapid climate change promotes changes in distribution ranges of Nezara viridula and Nezara antennata in Japan. Entomol Exp Appl 130:249–258CrossRefGoogle Scholar
  97. Tsoar A, Allouche O, Steinitz O et al (2007) A comparative evaluation of presence-only methods for modelling species distribution. Divers Distrib 13:397–405CrossRefGoogle Scholar
  98. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363PubMedCrossRefGoogle Scholar
  99. Ureña-Aranda CA, Rojas-Soto O, Martínez-Meyer E et al (2015) Using range-wide abundance modeling to identify key conservation areas for the micro-endemic Bolson Tortoise (Gopherus flavomarginatus). PLoS One 10:e0131452. doi: 10.1371/journal.pone.0131452 PubMedCentralPubMedCrossRefGoogle Scholar
  100. VanDerWal J, Shoo LP, Graham C, William SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594CrossRefGoogle Scholar
  101. Varela S, Anderson RP, García-Valdés R, Fernández-González F (2014) Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37:1084–1091Google Scholar
  102. Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr 36:2290–2299CrossRefGoogle Scholar
  103. Whittaker RJ, Araújo MB, Jepson P et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23CrossRefGoogle Scholar
  104. Williams H, Mark W (1983) Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol Bull 164:355–395CrossRefGoogle Scholar
  105. Zucchi R, Sakagami SF, Camargo JMF (1969) Biological observations on a neotropical parasocial bee, Eulaema nigrita, with a review on the biology of Euglossinae (Hymenoptera, Apidae). J Fac Sci Hokkaido Univ Ser VI Zool 17:271–380Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Daniel P. Silva
    • 1
  • Ana C. B. A. Macêdo
    • 2
  • John S. Ascher
    • 3
  • Paulo De MarcoJr.
    • 2
    • 4
  1. 1.Departamento de Ciências BiológicasInstituto Federal GoianoUrutaíBrazil
  2. 2.Theory, Metapopulation and Landscape Lab, Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  4. 4.Departamento de Ecologia, Instituto de Ciências Biológicas, Prédio 5Universidade Federal de GoiásGoiâniaBrazil

Personalised recommendations