Journal of Insect Conservation

, Volume 19, Issue 2, pp 377–391 | Cite as

Oviposition site selection of an endangered butterfly at local spatial scales

  • Rune Skjold Tjørnløv
  • W. Daniel Kissling
  • Jean-Yves Barnagaud
  • Peder Klith Bøcher
  • Toke Thomas Høye


As pre-hibernating larvae of the marsh fritillary (Euphydryas aurinia) have limited mobility essential resources need to be available at a very local scale. We surveyed larval webs (2011–2013), the host plant devil’s bit scabious (Succisa pratensis) (2012), and derived variables from digital orthophotos and digital elevation models (Normalized Differenced Vegetation Index, accumulated sun hours, slope, aspect) to explain the presence–absence and abundance of larval webs at three different spatial grain sizes (5 × 2.5 m, 10 × 10 m, 25 × 25 m) across seven study sites in northern Jutland, Denmark. Two-component hurdle models indicated that host plant abundance was the only important predictor of presence–absence and abundance of larval webs across the seven sites. The strength of the host plant effect on larval web prevalence increased when enlarging spatial grain size. For presence–absence (and less for abundance), the effect of host plants on larval webs varied across study sites. Using mixed effects models, we additionally analysed presence–absence of larval webs (in 1 × 1 m plots) in relation to detailed host plant measurements (abundance and size), vegetation height, and environmental variables (soil temperature, air temperature and soil moisture) across four of the sites. This showed that larval webs were located in the densest parts of the host plant patches. Given the low mobility of pre-hibernating larvae (<0.5 m), our results suggest that females select dense parts within large patches of host plants as oviposition sites. Future management should concentrate on establishing large patches of the larval host plant.


Abundance Euphydryas aurinia Host plants Larval webs NDVI Presence–absence Remote sensing Resource selection 



We thank Ib Krag Petersen for GPS and GIS assistance during the early phase of the project, and the field assistants Mette Kjær, Susan Hangstrup, Morten Swayne, Claus Bo Popenda Pedersen and Leif Pedersen for help with data collection. We also thank Flemming Helsing-Nielsen, Einar Flensted-Jensen, Anne Eskildsen, Marie Vissing, Joseph J. Bowden, Emil S. Brandtoft and Oskar Liset Pryds Hansen who all have contributed to the detailed surveys of larval webs. J.Y.B. received partial fundings from the CIRCE project under AU Ideas program.W.D.K. acknowledges support from an University of Amsterdam starting grant and T.T.H. acknowledges funding from 15. Juni Fonden.


  1. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure—the key for successful management of pre-alpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185. doi: 10.1023/a:1027330422958 CrossRefGoogle Scholar
  2. Betzholtz PE, Ehrig A, Lindeborg M, Dinnétz P (2007) Food plant density, patch isolation and vegetation height determine occurrence in a Swedish metapopulation of the marsh fritillary Euphydryas aurinia (Rottemburg, 1775) (Lepidoptera, Nymphalidae). J Insect Conserv 11:343–350. doi: 10.1007/s10841-006-9048-3 CrossRefGoogle Scholar
  3. Bini LM et al (2009) Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography 32:193–204. doi: 10.1111/j.1600-0587.2009.05717.x CrossRefGoogle Scholar
  4. Botham MS et al (2011) The effects of habitat fragmentation on niche requirements of the marsh fritillary, Euphydryas aurinia, (Rottemburg, 1775) on calcareous grasslands in southern UK. J Insect Conserv 15:269–277. doi: 10.1007/s10841-010-9344-9 CrossRefGoogle Scholar
  5. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  6. Dennis RLH (2010) A resource-based view for habitat conservation. Wiley, OxfordCrossRefGoogle Scholar
  7. Directive C (92/43/EEC) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and floraGoogle Scholar
  8. Ellis S, Wainwright D, Berney F, Bulman C, Bourn N (2011) Landscape-scale conservation in practice: lessons from northern England UK. J Insect Conserv 15:69–81. doi: 10.1007/s10841-010-9324-0 CrossRefGoogle Scholar
  9. ESRI (2013) ArcGIS Desktop: Release 10.1. Redlands, Ca: Environmental Systems Research InstituteGoogle Scholar
  10. Fisher NI (1995) Statistical analysis of circular data. Cambridge University Press, CambridgeGoogle Scholar
  11. Forsberg R (2007) Luftbåren laserscanning til støtte af klima-og miljøovervågning. Perspektiv 12:31–39Google Scholar
  12. Fowles AP, Smith RG (2006) Mapping the habitat quality of patch networks for the marsh fritillary Euphydryas aurinia (Rottemburg, 1775) (Lepidoptera, Nymphalidae) in Wales. J Insect Conserv 10:161–177. doi: 10.1007/s10841-006-6291-6 CrossRefGoogle Scholar
  13. Fredshavn J, Nielsen KE, Ejrnæs R, Nygaard B, Skov F, Strandberg B, Johannsen VK (2009) Overvågning af terrestriske naturtyper. DCE—Nationalt Center for Miljø og Energi, Aarhus University, DenmarkGoogle Scholar
  14. Gutierrez D, Thomas CD, Leon-Cortes JL (1999) Dispersal, distribution, patch network and metapopulation dynamics of the dingy skipper butterfly (Erynnis tages). Oecologia 121:506–517. doi: 10.1007/s004420050957 CrossRefGoogle Scholar
  15. Herben T, Munzbergova Z, Milden M, Ehrlen J, Cousins SAO, Eriksson O (2006) Long-term spatial dynamics of Succisa pratensis in a changing rural landscape: linking dynamical modelling with historical maps. J Ecol 94:131–143. doi: 10.1111/j.1365-2745.2005.01063.x CrossRefGoogle Scholar
  16. Hess AN, Falkowski MJ, Webster CR, Storer AJ, Pocewicz A, Martinuzzi S (2013) Employing lidar data to identify butterfly habitat characteristics of four contrasting butterfly species across a diverse landscape. Remote Sens Lett 4:354–363. doi: 10.1080/2150704x.2012.734932 CrossRefGoogle Scholar
  17. Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735. doi: 10.2307/5671 CrossRefGoogle Scholar
  18. Klapwijk MJ, Lewis OT (2014) Spatial ecology of host-parasitoid interactions: a threatened butterfly and its specialised parasitoid. J Insect Conserv 18:437–445. doi: 10.1007/s10841-014-9653-5 CrossRefGoogle Scholar
  19. Konvicka M, Hula V, Fric Z (2003) Habitat of pre-hibernating larvae of the endangered butterfly Euphydryas aurinia (Lepidoptera : Nymphalidae): what can be learned from vegetation composition and architecture? Eur J Entomol 100:313–322CrossRefGoogle Scholar
  20. Kudrna O, Harpke A, Lux K, Pennersoft J, Schweiger O, Settele J, Wiemers M (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz, HalleGoogle Scholar
  21. Kuussaari M, van Nouhuys S, Hellmann JJ, Singer MC (2004) Larval biology of checkerspots. In: Ehrlich PR, Hanski I (eds) On the wings of checkerspots: a model system for population biology. Oxford University Press, New York, pp 138–160Google Scholar
  22. Legendre P, Legendre L (2012) Spatial structure, spatial dependence, spatial correlation. Numerical ecology, vol 24, 3rd edn. Elsevier, Amsterdam, pp 8–21Google Scholar
  23. Liu W, Wang Y, Xu R (2006) Habitat utilization by ovipositing females and larvae of the Marsh fritillary (Euphydryas aurinia) in a mosaic of meadows and croplands. J Insect Conserv 10:351–360. doi: 10.1007/s10841-006-9009-x CrossRefGoogle Scholar
  24. Mason DC, Anderson GQA, Bradbury RB, Cobby DM, Davenport IJ, Vandepoll M, Wilson JD (2003) Measurement of habitat predictor variables for organism-habitat models using remote sensing and image segmentation. Int J Remote Sens 24:2515–2532. doi: 10.1080/014311602100100848 CrossRefGoogle Scholar
  25. Milner-Gulland EJ, Fryxell JM, Sinclair ARE (2011) Animal migration: a synthesis. Oxford University Press, OxfordCrossRefGoogle Scholar
  26. Pennekamp F, Monteiro E, Schmitt T (2013) The larval ecology of the butterfly Euphydryas desfontainii (Lepidoptera: Nymphalidae) in SW-Portugal: food plant quantity and quality as main predictors of habitat quality. J Insect Conserv 17:195–206. doi: 10.1007/s10841-012-9497-9 CrossRefGoogle Scholar
  27. Porter K (1981) The population dynamics of small colonies of the butterfly Euphydryas aurinia. Oxford University, OxfordGoogle Scholar
  28. Porter K (1992) Eggs and egg-laying. In: Dennis RLH (ed) The ecology of butterflies in Britain. Oxford University, Oxford, pp 46–72Google Scholar
  29. Potts JM, Elith J (2006) Comparing species abundance models Ecological Modelling 199:153–163. doi: 10.1016/j.ecolmodel.2006.05.025 CrossRefGoogle Scholar
  30. R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, AustriaGoogle Scholar
  31. Rosenkranz B, Frederiksen P (2011) National Survey and Cadastre—Denmark, technical report series number 12.
  32. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. doi: 10.1111/j.2041-210X.2010.00012.x CrossRefGoogle Scholar
  33. Schtickzelle N, Choutt J, Goffart P, Fichefet V, Baguette M (2005) Metapopulation dynamics and conservation of the marsh fritillary butterfly: population viability analysis and management options for a critically endangered species in Western Europe. Biol Conserv 126:569–581. doi: 10.1016/j.biocon.2005.06.030 CrossRefGoogle Scholar
  34. Sigaard P, Pertoldi C, Madsen AB, Sogaard B, Loeschcke V (2008) Patterns of genetic variation in isolated Danish populations of the endangered butterfly Euphydryas aurinia. Biol J Linn Soc 95:677–687. doi: 10.1111/j.1095-8312.2008.01078.x CrossRefGoogle Scholar
  35. Stefanescu C, Penuelas J, Sardans J, Filella I (2006) Females of the specialist butterfly Euphydryas aurinia (Lepidoptera : Nymphalinae : Melitaeini) select the greenest leaves of Lonicera implexa (Caprifoliaceae) for oviposition. Eur J Entomol 103:569–574CrossRefGoogle Scholar
  36. Stoltze M (1996) Danske dagsommerfugle. Gyldendal, AalborgGoogle Scholar
  37. Thomas CD (1985) Specializations and polyphagy of Plebejus argus (Lepidoptera, Lycaenidae) in North-Wales. Ecol Entomol 10:325–340. doi: 10.1111/j.1365-2311.1985.tb00729.x CrossRefGoogle Scholar
  38. Wahlberg N, Klemetti T, Hanski I (2002) Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly. Ecography 25:224–232. doi: 10.1034/j.1600-0587.2002.250210.x CrossRefGoogle Scholar
  39. Warren MS (1994) The UK status and suspected metapopulation structure of a threatened European butterfly, the marsh fritillary Eurodryas aurinia. Biol Conserv 67:239–249. doi: 10.1016/0006-3207(94)90615-7 CrossRefGoogle Scholar
  40. Wiegand T, Naves J, Garbulsky MF, Fernandez N (2008) Animal habitat quality and ecosystem functioning: exploring seasonal patterns using NDVI. Ecol Monogr 78:87–103. doi: 10.1890/06-1870.1 CrossRefGoogle Scholar
  41. Wind P (2010) Den danske rødliste. Danmarks Miljøundersøgelser.
  42. Zimmermann K, Fric Z, Jiskra P, Kopeckova M, Vlasanek P, Zapletal M, Konvicka M (2011) Mark-recapture on large spatial scale reveals long distance dispersal in the Marsh Fritillary Euphydryas aurinia. Ecol Entomol 36:499–510. doi: 10.1111/j.1365-2311.2011.01293.x CrossRefGoogle Scholar
  43. Zuur A, Ieno E, Walker N, Saveliev A, Smith G (2009) Mixed effects models and extensions in ecology with R. Springer New York. doi: 10.1007/978-0-387-87458-6_1 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rune Skjold Tjørnløv
    • 1
    • 2
    • 3
  • W. Daniel Kissling
    • 4
  • Jean-Yves Barnagaud
    • 3
    • 5
    • 6
  • Peder Klith Bøcher
    • 3
  • Toke Thomas Høye
    • 1
    • 7
    • 8
  1. 1.Department of Bioscience – Section for Wildlife Ecology and Section for BiodiversityAarhus UniversityRøndeDenmark
  2. 2.Department of BioscienceAarhus UniversityRoskilde, RisøDenmark
  3. 3.Department of Bioscience – Section for Ecoinformatics & BiodiversityAarhus UniversityAarhus CDenmark
  4. 4.Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands
  5. 5.INRA - BIOGECOUMR 1202Cestas,CedexFrance
  6. 6.CEFE UMR 5175, CNRS – EPHE - Laboratoire Biogéographie et Ecologie des vertébrés - Campus du CNRS - Université Paul-Valéry MontpellierUniversité de MontpellierMontpellierFrance
  7. 7.Aarhus Institute of Advanced StudiesAarhus UniversityAarhus CDenmark
  8. 8.Arctic Research CenterAarhus UniversityAarhus CDenmark

Personalised recommendations