Advertisement

Journal of Insect Conservation

, Volume 18, Issue 6, pp 1203–1213 | Cite as

Landscape and local variables benefit rare species and common ones differently

  • Zoltán László
  • László Rákosy
  • Béla Tóthmérész
ORIGINAL PAPER

Abstract

Our ecological knowledge is mainly based on studies about frequent and abundant species, while the vast majority of species are rare; moreover, rare species play crucial role in the evolutionary adaptation of communities to changing land use. Therefore, spatial scale-dependent studies on rare species from the same community may contribute to understanding rare species’ responses. At the same time, by taking into account the effect of landscape structure as well, results of such studies may ease the implementation of conservation management plans or environmental planning. In our research we aimed to assess and quantify the effects of local and landscape-level environmental variables on abundance, incidence and parasitism rates for rare parasitoids belonging to the same community. For this reason, we examined the parasitoid community exploiting the gall-inducing Diplolepis rosae to learn about rare species’ responses to environmental variables at different scales. We have found that local effects on rare species composition diminished while landscape effects increased compared to effects on common species from the same community. Similarly, specific responses of rare species revealed a higher impact of landscape-scale processes than in the case of common species. Although in the case of rare species it is difficult to recognize the effects of environmental changes across spatial scales due to their rarity, we have concluded that the latter are more sensitive to landscape-level changes than common species. Our study underlines the varying importance of environmental changes across spatial scales in the case of both rare and common species; hence rarity and commonness contribute significantly to drawing reliable conclusions about community and interaction patterns.

Keywords

Commonness Dispersal Landscape heterogeneity Local effects Parasitoid Rarity 

Notes

Acknowledgments

Authors are grateful for B. H. Nagy, T. Varga and L. Kereki for their help during field and laboratory work. This work was supported by a grant of the Romanian Ministry of Education, CNCS–UEFISCDI, Project Number PN-II-RU-PD-2012-3-0065/2012 and by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project.

Supplementary material

10841_2014_9734_MOESM1_ESM.doc (228 kb)
Details of biological characteristics of rare community members, details of the canonical correspondence analysis and backward stepwise model selection (DOC 228 kb)

References

  1. Bannerman JA, Shorthouse JD, Pither J, Lalonde RG (2012) Variability in the parasitoid community associated with galls of Diplolepis variabilis (Hymenoptera: Cynipidae): a test of the distance decay hypothesis. Can Entomol 144:635–644. doi: 10.4039/tce.2012.48 CrossRefGoogle Scholar
  2. Bates D, Maechler M, Bolker B (2012) lme4: linear mixed-effects models using S4 classes. In: R Packag (ed.). version 0.999999-2. http://cran.r-project.org/package=lme4
  3. Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932. doi: 10.1111/j.1461-0248.2011.01642.x PubMedCrossRefGoogle Scholar
  4. Compton G (2002) Sailing with the wind: dispersal by small flying insects. Dispersal ecology: 42nd Symposium of the British Ecological Society. Cambridge University Press, pp 113–133Google Scholar
  5. Elzinga JA, van Nouhuys S, van Leeuwen D-J, Biere A (2007) Distribution and colonisation ability of three parasitoids and their herbivorous host in a fragmented landscape. Basic Appl Ecol 8:75–88. doi: 10.1016/j.baae.2006.04.003 CrossRefGoogle Scholar
  6. Fahrig L, Baudry J, Brotons L et al (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112. doi: 10.1111/j.1461-0248.2010.01559.x
  7. Flick T, Feagan S, Fahrig L (2012) Effects of landscape structure on butterfly species richness and abundance in agricultural landscapes in eastern Ontario, Canada. Agric Ecosyst Environ 156:123–133CrossRefGoogle Scholar
  8. Fournier DA, Skaug HJ, Ancheta J et al (2012) AD model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249CrossRefGoogle Scholar
  9. Futuyma DJ, Moreno G (2012) The evolution of ecological spetialisation. Annu Rev Ecol Syst 19:207–233CrossRefGoogle Scholar
  10. Gagic V, Tscharntke T, Dormann CF et al (2011) Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc Biol Sci 278:2946–2953. doi: 10.1098/rspb.2010.2645 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Gagic V, Hänke S, Thies C, Tscharntke T (2013) Community variability in aphid parasitoids versus predators in response to agricultural intensification. Insect Conserv Divers 7:103–112. doi: 10.1111/icad.12037 CrossRefGoogle Scholar
  12. Gaston KJ (1994) Rarity. Chapman and Hall, LondonGoogle Scholar
  13. Gonthier DJ, Ennis KK, Farinas S et al (2014) Biodiversity conservation in agriculture requires a multi-scale approach biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc Lond Ser B Biol Sci 281:20141358CrossRefGoogle Scholar
  14. Holzschuh A, Steffan-Dewenter I, Tscharntke T (2010) How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J Anim Ecol 79:491–500. doi: 10.1111/j.1365-2656.2009.01642.x PubMedCrossRefGoogle Scholar
  15. Hutchings JA, Myers RA, Garcia VB et al (2012) Life-history correlates of extinction risk and recovery potential. Ecol Appl 22:1061–1067PubMedCrossRefGoogle Scholar
  16. Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landsc Ecol 27:929–941. doi: 10.1007/s10980-012-9757-9 CrossRefGoogle Scholar
  17. Jaeger JAG (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landsc Ecol 15:115–130Google Scholar
  18. Joern A, Laws AN (2013) Ecological mechanisms underlying arthropod species diversity in grasslands. Annu Rev Entomol 58:19–36. doi: 10.1146/annurev-ento-120811-153540 PubMedCrossRefGoogle Scholar
  19. Kohnen A, Wissemann V, Brandl R (2011) No host-associated differentiation in the gall wasp Diplolepis rosae (Hymenoptera: Cynipidae) on three dog rose species. Biol J Linn Soc 102:369–377CrossRefGoogle Scholar
  20. Kruess A, Tscharntke T (2000) Species richness and parasitism in a fragmented landscape: experiments and field studies with insects on Vicia sepium. Oecologia 122:129–137. doi: 10.1007/PL00008829 CrossRefGoogle Scholar
  21. Kunin WE, Gaston KJ (1993) The biology of rarity: patterns, causes and consequences. Trends Ecol Evol 8:298–301. doi: 10.1016/0169-5347(93)90259-R PubMedCrossRefGoogle Scholar
  22. László Z, Tóthmérész B (2008) Optimal clutch size of the gall wasp Diplolepis rosae (Hymenoptera: Cynipidae). Entomol Fenn 19:168–175Google Scholar
  23. László Z, Tóthmérész B (2013) Landscape and local effects on multiparasitoid coexistence. Insect Conserv Divers 6:354–364. doi: 10.1111/j.1752-4598.2012.00225.x CrossRefGoogle Scholar
  24. Looney C, Eigenbrode SD (2010) Landscape-level effects on cynipid component communities of “orphaned” native shrubs. J Insect Conserv 15:695–706. doi: 10.1007/s10841-010-9369-0 CrossRefGoogle Scholar
  25. McGill BJ, Etienne RS, Gray JS et al (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett 10:995–1015. doi: 10.1111/j.1461-0248.2007.01094.x
  26. Melles S, Glenn S, Martin K (2003) Urban bird diversity and landscape complexity: Species-environment associations along a multiscale habitat gradient. Conserv Ecol 7:5Google Scholar
  27. Mouillot D, Bellwood DR, Baraloto C et al (2013) Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol 11:e1001569. doi: 10.1371/journal.pbio.1001569 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 PubMedCrossRefGoogle Scholar
  29. Nathan R, Sapir N, Trakhtenbrot A et al (2005) Long-distance biological transport processes through the air: can nature’s complexity be unfolded in silico? Divers Distrib 11:131–137. doi: 10.1111/j.1366-9516.2005.00146.x CrossRefGoogle Scholar
  30. Oksanen J, Blanchet FG, Kindt R et al. (2011) vegan: community ecology package. In: R Packag (ed.) version 2.0-2. http://cran.r-project.org/package=vegan
  31. Piechnik DA (2013) Trophic levels colonize sequentially but effects of habitat size and quality are transient. Acta Oecologica 47:85–94CrossRefGoogle Scholar
  32. Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc London Ser B Biol Sci 267:1947–1952. doi: 10.1098/rspb.2000.1234 CrossRefGoogle Scholar
  33. Rand TA, van Veen FJF, Tscharntke T (2012) Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography (Cop) 35:97–104. doi: 10.1111/j.1600-0587.2011.07016.x CrossRefGoogle Scholar
  34. R Core Team (2013) R: a language and environment for statistical computing. In: R Foundation for Statistical Computing Vienna, Austria. http://www.r-project.org/
  35. Rösch V, Tscharntke T, Scherber C, Batáry P (2013) Landscape composition, connectivity and fragment size drive effects of grassland fragmentation on insect communities. J Appl Ecol 50:387–394CrossRefGoogle Scholar
  36. Siqueira T, Bini LM, Roque FO et al (2012) Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography 35:183–192. doi: 10.1111/j.1600-0587.2011.06875.x CrossRefGoogle Scholar
  37. Söderström B, Svensson B, Vessby K, Glimskär A (2001) Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers Conserv 10:1839–1863CrossRefGoogle Scholar
  38. Soons MB, Heil GW, Nathan R, Katul GG (2004) Determinants of long-distance seed dispersal by wind in grasslands. Ecology 85:3056–3068CrossRefGoogle Scholar
  39. Stille B (1984) The effect of hostplant and parasitoids on the reproductive success of the parthenogenetic gall wasp Diplolepis rosae. Oecologia 63:364–369CrossRefGoogle Scholar
  40. Stoner KJL, Joern A (2004) Landscape versus local habitat scale influences to insect communities from tallgrass prairie remnants. Ecol Appl 14:1306–1320CrossRefGoogle Scholar
  41. Sullivan DJ, Völkl W (1999) Hyperparasitism: multitrophic ecology and behavior. Annu Rev Entomol 44:291–315PubMedCrossRefGoogle Scholar
  42. Ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to Canoco for windows: software for canonical community ordination (version 4). Microcomput. PowerGoogle Scholar
  43. Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18–25CrossRefGoogle Scholar
  44. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland: cropland landscapes. Ecol Appl 12:354–363Google Scholar
  45. Tscharntke T, Tylianakis JM, Rand TA et al (2012) Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol Rev 87:661–685. doi: 10.1111/j.1469-185X.2011.00216.x PubMedCrossRefGoogle Scholar
  46. Venebles WN, Ripley BD (1994) Modern applied statistics with S-PLUS. Springer, New YorkGoogle Scholar
  47. Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zoltán László
    • 1
  • László Rákosy
    • 2
  • Béla Tóthmérész
    • 3
  1. 1.Hungarian Department of Biology and EcologyBabeş-Bolyai UniversityCluj-NapocaRomania
  2. 2.Department of Taxonomy and EcologyBabeş-Bolyai UniversityCluj-NapocaRomania
  3. 3.MTA-DE Biodiversity and Ecosystem Services Research GroupDebrecenHungary

Personalised recommendations