Journal of Insect Conservation

, Volume 18, Issue 6, pp 1147–1152 | Cite as

Habitat conversion and galling insect richness in tropical rainforests under mining effect

  • Walter Santos de Araújo
  • Kleber do Espírito-Santo Filho
  • Leonardo Lima Bergamini
  • Ramon Gomes
  • Sérgio Augusto Abrahão Morato
ORIGINAL PAPER

Abstract

Human-induced habitat change is the main cause of species loss and can have severe effects on plant communities and the associated herbivore fauna. In this study, we investigated the effects of habitat conversion due to mining on communities of galling insects in areas of tropical rainforest in the Brazilian Amazon. We sampled galling insects in the Floresta Nacional de Saracá Taquera, Pará, Brazil, where forest plateaus are used by the Mineração Rio do Norte Group to extract bauxite. Our results show that human-induced habitat change via mining activities increased the local species richness of galling insects. We also found that after impact there was greater species richness of galling insects closer to the forest edge than in the forest interior. Changes in plant physiology and in the diversity of natural enemies in human-modified habitats, along with the endophagous life-form, might account for the high incidence of galling in human-disturbed habitats. This result highlights the importance of understanding how different insect groups respond to human activities, since such idiosyncrasies might have profound effects on the species’ patterns of ecological interactions and in the outcomes of those interactions.

Keywords

Galls Habitat change Phytophagous insects Tropical forest 

References

  1. Araújo WS (2013) Different relationships between galling and non-galling herbivore richness and plant species richness: a meta-analysis. Arthropod Plant Interact 7:373–377. doi:10.1007/s11829-013-9259-y
  2. Araújo WS, Espírito-Santo Filho K (2012) Edge effect benefits galling insects in the Brazilian Amazon. Biodivers Conserv 21:2991–2997. doi:10.1007/s10531-012-0333-z CrossRefGoogle Scholar
  3. Araújo WS, Julião GR, Ribeiro BA, Silva IPA, Santos BB (2011) Diversity of galling insects in Styrax pohlii (Styracaceae): edge effects and use as bioindicators. Rev Biol Trop 59:1589–1597Google Scholar
  4. Bates D, Maechler M, Ben B, Steven W (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–6. http://CRAN.Rproject.org/package=lme4
  5. Bergquist J, Örlander G, Nilsson U (2003) Interactions among forestry regeneration treatments, plant vigour and browsing damage by deer. New For 25:25–40. doi:10.1023/A:1022378908827 CrossRefGoogle Scholar
  6. Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615. doi:10.1126/science.1232728 PubMedCrossRefGoogle Scholar
  7. Carneiro MAA, Fernandes GW, Souza OFF (2005) Convergence in the variation of local and regional galling species richness. Neotrop Entomol 34:547–553. doi:10.1590/S1519-566X2005000400003 CrossRefGoogle Scholar
  8. Carneiro MAA, Branco CSA, Braga CED, Almada ED, Costa MBM, Maia VC, Fernandes GW (2009) Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev Bras Entomol 53:365–378. doi:10.1590/S0085-56262009000300010 Google Scholar
  9. Christie FJ, Gerasimos C, Hochuli DF (2010) Urbanization affects the trophic structure of arboreal arthropod communities. Urban Ecosyst 13:169–180. doi:10.1007/s11252-009-0115-x CrossRefGoogle Scholar
  10. Cuevas-Reyes P, Quesada M, Hanson P, Dirzo R, Oyama K (2004) Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant range and plant density. J Ecol 92:707–716CrossRefGoogle Scholar
  11. Dalbem RV, Mendonça MS (2006) Diversity of galling arthropods and host plants in a subtropical forest of Porto Alegre, southern Brazil. Neotrop Entomol 35:616–624PubMedCrossRefGoogle Scholar
  12. Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:489–496. doi:10.1016/j.tree.2007.07.001 PubMedCrossRefGoogle Scholar
  13. Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76:161–167CrossRefGoogle Scholar
  14. Fernandes GW, Almada ED, Carneiro MAA (2010) Gall-inducing insect species richness as indicators of forest age and health. Environ Entomol 39:1134–1140. doi:10.1603/EN09199 PubMedCrossRefGoogle Scholar
  15. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howord EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772 PubMedCrossRefGoogle Scholar
  16. Gonçalves-Alvim S, Fernandes GW (2001) Biodiversity of galling insects: historical, community and habitat effects in four Neotropical savannas. Biodivers Conserv 10:79–98CrossRefGoogle Scholar
  17. Gonçalves-Alvim SJ, Faria ML, Fernandes GW (1999) Relationships between four neotropical species of galling insects and shoot vigor. An Soc Entomol Brasil 28:147–155CrossRefGoogle Scholar
  18. Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Ockinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605. doi:10.1111/j.1461-0248.2010.01457.x PubMedCentralPubMedCrossRefGoogle Scholar
  19. Laliberté E, Tylianakis JM (2010) Deforestation homogenizes tropical parasitoid–host networks. Ecology 91:1740–1747. doi:10.1890/09-1328.1 PubMedCrossRefGoogle Scholar
  20. Lewinsohn TM, Novotny V, Basset Y (2005) Insects on plants: diversity of herbivore assemblages revisited. Ann Rev Ecol Syst 36:597–620CrossRefGoogle Scholar
  21. Maia VC (2011) Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop 11:37–53. doi:10.1590/S1676-06032011000400003 CrossRefGoogle Scholar
  22. Marini-Filho OJ (2000) Distance-limited recolonization of burned Cerrado by leaf-miners and gallers in Central Brazil. Environ Entomol 29:901–906. doi:10.1603/0046-225X-29.5.901 CrossRefGoogle Scholar
  23. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62. doi:10.1016/S0169-5347(00)88977-6 PubMedCrossRefGoogle Scholar
  24. Oyama K, Pérez-Pérez MA, Cuevas-Reyes P, Luna-Reyes R (2003) Regional and local species richness of gall-inducing insects in two tropical rain forests in Mexico. J Trop Ecol 19:595–598. doi:10.1017/S0266467403003651 CrossRefGoogle Scholar
  25. Petermann JS, Müller CB, Weigelt A, Weisser WW, Schmid B (2010) Effect of plant species loss on aphid-parasitoid communities. J Anim Ecol 79:709–720. doi:10.1111/j.1365-2656.2010.01674.x PubMedCrossRefGoogle Scholar
  26. Price PW (1191) The plant vigor hypothesis and herbivore attack. Oikos 62: 244–251Google Scholar
  27. Price PW, Fernandes GW, Waring GL (1987) Adaptative nature of insect galls. Environ Entomol 16:15–24Google Scholar
  28. R Development Core Team 2014. R: A language and environment for statistical computing (v. 3.1.0). R foundation for statistical computing. Vienna, Austria. http://www.R-project.org
  29. Seabloom EW, Willia JW, Slayback D, Stoms DM, Viers JH, Dobson AP (2006) Human impacts, plant invasion, and imperiled plant species in California. Ecol Appl 16:1338–1350PubMedCrossRefGoogle Scholar
  30. Silva JNM, Carvalho JOP, Lopes JCA, Almeida BF, Costa DHM, Oliveira LC, Vanclay JK, Skovsgaard JP (1995) Growth and yeld of a tropical rain forest in the Brazilian Amazon 13 years after logging. Forest Ecol Manag 71:267–274CrossRefGoogle Scholar
  31. Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522. doi:10.1016/S0169-5347(03)00247-7 CrossRefGoogle Scholar
  32. Tilman D, Lehman C (2001) Human-caused environmental change: impacts on plant diversity and evolution. PNAS 10:5433–5440. doi:10.1073/pnas.091093198 CrossRefGoogle Scholar
  33. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239CrossRefGoogle Scholar
  34. Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202–205. doi:10.1038/nature05429 PubMedCrossRefGoogle Scholar
  35. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363. doi:10.1111/j.1461-0248.2008.01250.x PubMedCrossRefGoogle Scholar
  36. Veldtman R, Mcgeoch MA (2003) Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: the importance of plant community composition. Austral Ecol 28:11–13. doi:10.1046/j.1442-9993.2003.01234.x CrossRefGoogle Scholar
  37. Wijayratne UC, Scoles-Sciulla SJ, Defalco LA (2009) Dust deposition effects on growth and physiology of the endangered Astragalus jaegerianus (Fabaceae). Madroño 56:81–88. doi:10.3120/0024-9637-56.2.81 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Walter Santos de Araújo
    • 1
    • 2
  • Kleber do Espírito-Santo Filho
    • 2
  • Leonardo Lima Bergamini
    • 1
  • Ramon Gomes
    • 3
  • Sérgio Augusto Abrahão Morato
    • 3
    • 4
  1. 1.Departamento de Ecologia, ICBUniversidade Federal de Goiás (UFG)GoiâniaBrazil
  2. 2.Núcleo de Ecologia de Insetos–HRC (Hexapoda Research Co-operation)GoiâniaBrazil
  3. 3.STCP Engenharia de Projetos LtdaCuritibaBrazil
  4. 4.Curso de Pós-Graduação/MBA em Gestão Ambiental–DCAUFPACuritibaBrazil

Personalised recommendations