Journal of Insect Conservation

, Volume 18, Issue 5, pp 981–992 | Cite as

Influence of tree hollow characteristics on the diversity of saproxylic insect guilds in Iberian Mediterranean woodlands

  • Javier Quinto
  • Estefanía Micó
  • Ana Paola Martínez-Falcón
  • Eduardo Galante
  • María de los Ángeles Marcos-García


Saproxylic diversity assessment is a major goal for conservation strategies in woodlands and it should consider woodland composition and configuration at site and tree level as key modelling factors. However, in Mediterranean woodlands little is known about the relation with the environmental factors that structure their assemblages, especially those linked to tree hollow microhabitats. We assessed the diversity of Syrphidae (Diptera) and Coleoptera saproxylic guilds that co-occurred in tree hollows located in three different Iberian Mediterranean woodlands in the Cabañeros National Park (Spain). Furthermore, we evaluated how differences in tree hollow microenvironmental variables (understood as the physical and biotic characteristics of a hollow and tree individual) influenced saproxylic guild diversity both within and among woodland sites. We found that woodland sites that provided greater heterogeneity of trees and hollow microhabitats determined higher saproxylic guild diversity. Nevertheless, certain species or even complete guilds can be favoured in woodlands where some hollow microhabitats predominate as a consequence of historical tree management. In general, hollow volume was the main determining factor for saproxylic guild richness and abundance in woodland sites, and large hollow volume was usually related to higher diversity, which highlighted the importance of multi-habitat hollow trees. Moreover, saproxylic guilds also responded to other different microenvironmental variables, which indicated different ecological preferences among guilds. The conservation of saproxylic insects in Iberian Mediterranean areas must be addressed to protect woodland sites that provide high diversity and large numbers of tree hollow microhabitats, and practices to enhance microhabitat heterogeneity should even be encouraged.


Feeding guilds Coleoptera Syrphidae Quercus Fraxinus Woodland management 



Financial support was given by the research Projects CGL2008-04472, CGL2009-09656, CGL2011-23658, CGL2012-31669 of the Spanish Government, and PROMETEO 2013/034 of the Generalitat Valenciana. We should like to thank H. Brustel, A. Viñolas, A. Verdugo, F. Soldati, O. Rose, J. C. Otero, M. A. Alonso-Zarazaga, A. Herrmann, J. L. Zapata, J. P. Tamisier, G. Liberti, C. Pérez, R. Allemand, T. Noblecourt, P. Leblanc, L. Chékir, P. Vienna, A. Ricarte, Z. Nedeljkovic and G. Rotheray for their help with immature insect identification. We are also grateful to the Cabañeros National Park Administration for their continued assistance in our field work.

Supplementary material

10841_2014_9705_MOESM1_ESM.doc (218 kb)
Supplementary material 1 (DOC 217 kb)


  1. Alexander KNA (2008) Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev Écol (Terre Vie) 63:1–5Google Scholar
  2. Bouget C, Brustel H, Nageleisen LM (2005) Nomenclature des groupes écologiques d’insectes liés au bois: synthèse et mise au point sémantique. Biologies (Comptes-Rendus de l’Académie des Sciences) 328:936–948CrossRefGoogle Scholar
  3. Buse J, Dayan T, Levanony T, Timm A, Assmann T (2008) Saproxylic beetle assemblages in three managed oak woodlands in the Eastern Mediterranean. Zool Middle East 45:55–66CrossRefGoogle Scholar
  4. Chao A, Shen TJ (2003) Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10:429–433CrossRefGoogle Scholar
  5. Chao A, Shen TJ (2010) Program SPADE (Species prediction and diversity estimation).
  6. Clarke KR, Gorley RN (2009) PRIMER & PERMANOVA v PRIMER-E, PlymouthGoogle Scholar
  7. Colwell RK (2005) Estimates: statistical estimation of species richness and shared species from samples. Version 8.0 users’ guide and application.
  8. Fayt P, Dufrêne M, Branquart E, Hastir P, Pontégnie C, Henin JM, Versteirt V (2006) Contrasting responses of saproxylic insects to focal habitat resources: the example of longhorn beetles and hoverflies in Belgium deciduous forests. J Insect Conserv 10:129–150CrossRefGoogle Scholar
  9. Gouix N, Brustel H (2012) Emergence trap, a new method to survey Limoniscus violaceus (Coleoptera: Elateridae) from hollow trees. Biodivers Conserv 21:421–436CrossRefGoogle Scholar
  10. Gouix N, Mertlik J, Jarzabek-Müller A, Németh T, Brustel H (2012) Known status of the endangered western Palaearctic violet click beetles (Limoniscus violaceus) (Coleoptera). J Nat Hist 46:769–802CrossRefGoogle Scholar
  11. Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23CrossRefGoogle Scholar
  12. Henderson PA, Seaby RMH (2002) Species diversity and richness. Version 3.02. Pisces Conservation Ltd, Lymington.$techmenu.html
  13. Hjältén J, Johansson T, Alinvi O, Danell K, Ball JP, Pettersson R, Gibb H, Hilszczański J (2007) The importance of substrate type, shading and scorching for the attractiveness of dead wood to saproxylic beetles. Basic Appl Ecol 8:364–376CrossRefGoogle Scholar
  14. Hövemeyer K, Schauermann J (2003) Succession of Diptera on dead beech wood: a 10-yr of study. Pedobiologia 47:61–75CrossRefGoogle Scholar
  15. Jansson N, Coskum M (2008) How similar is the saproxylic beetle fauna on old oaks (Quercus spp.) in Turkey and Sweden? Rev Écol (Terre Vie) 10:91–99Google Scholar
  16. Johansson T, Gibb H, Hilszczański J, Pettersson RB, Hjältén J, Atlegrim O, Ball JP, Danell K (2006) Conservation-oriented manipulations of coarse woody debris affect its value as habitat for spruce- infesting bark and ambrosia beetles (Coleoptera: Scolytinae) in northern Sweden. Can J For Res 36:174–185CrossRefGoogle Scholar
  17. Jonsell M, Weslien J (2003) Felled or standing retained wood—it makes a difference for saproxylic beetles. For Ecol Manag 175:425–435CrossRefGoogle Scholar
  18. Jonsell M, Weslien J, Ehnström B (1998) Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers Conserv 7:749–764CrossRefGoogle Scholar
  19. Jost L (2006) Entropy and diversity. Oikos 113:363–375CrossRefGoogle Scholar
  20. Kleinbaum DG, Kupper LL, Muller KE, Nizam A (1998) Applied regression analysis and other multivariable methods. Duxbury Press, New YorkGoogle Scholar
  21. Kouki J, Löfman S, Martikainen P, Rouvinen S, Uotila A (2001) Forest fragmentation in Fennoscandia: linking habitat requirements of wood-associated threatened species to landscape and habitat changes. Scand J For Res 3:27–37CrossRefGoogle Scholar
  22. Larrieu L, Cabanettes A, Delarue A (2012) Impact of silviculture on deadwood and on the distribution and frequency of tree microhabitats in montane beech-fir forests of the Pyrenees. Eur J For Res 131:773–786CrossRefGoogle Scholar
  23. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, OxfordGoogle Scholar
  24. Marcos-García MA, Galante E (2013) Conservación de los insectos saproxílicos del bosque mediterráneo. In: Micó E, Marcos-García MA, Galante E (eds) Los insectos saproxílicos del Parque Nacional de Cabañeros. Organismo Autónomo de Parques Nacionales. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, pp 123–139Google Scholar
  25. Marcos-García MA, Quinto J (2011) Mallota dusmeti Andréu, 1926. In: Verdú JR, Galante E (eds) Atlas y Libro Rojo de los Invertebrados Amenazados de España. Especies Vulnerable, vol 1. Ministerio de Medio Ambiente, Medio rural y Marino, Madrid, pp 360–364Google Scholar
  26. Marcos-García MA, Micó E, Quinto J, Briones R, Galante E (2010) Lo que las oquedades esconden. Cuad Biodivers 34:3–7Google Scholar
  27. Micó E, Juárez M, Sánchez A, Galante E (2011) Action of the scarab larva Cetonia aurataeformis (Coleoptera: Scarabaeoidea: Cetoniidae) on woody substrates. J Nat Hist 45:2527–2542CrossRefGoogle Scholar
  28. Micó E, García-López A, Brustel H, Padilla A, Galante E (2013a) Explaining the saproxylic beetle diversity of a protected Mediterranean area. Biodivers Conserv 22:889–904CrossRefGoogle Scholar
  29. Micó E, Marcos-García MA, Galante E (2013b) Los insectos saproxílicos del Parque Nacional de Cabañeros. Organismo Autónomo de Parques Nacionales. Ministerio de Agricultura, Alimentación y Medio Ambiente, MadridGoogle Scholar
  30. Müller J, Bütler R (2010) A review of habitat threshold for dead wood: a baseline for management recommendations in European forests. Eur J For Res 129:981–992CrossRefGoogle Scholar
  31. Müller J, Bußler H, Kneib T (2008) Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany. J Insect Conserv 12:107–124CrossRefGoogle Scholar
  32. Müller J, Jarzabek-Müller A, Bussler H, Gossner MM (2014) Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim Conserv 17:154–162CrossRefGoogle Scholar
  33. Økland B, Bakke A, Hågvar S, Kvamme T (1996) What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodivers Conserv 5:75–100CrossRefGoogle Scholar
  34. Quinto J, Marcos-García MA, Díaz-Castelazo C, Rico-Gray V, Brustel H, Galante E, Micó E (2012) Breaking down complex saproxylic communities: understanding sub-networks structure and implications to network robustness. PLoS One 7(9):e45062. doi: 10.1371/journal.pone.0045062 PubMedCrossRefPubMedCentralGoogle Scholar
  35. Quinto J, Marcos-García MA, Brustel H, Galante E, Micó E (2013) Effectiveness of three sampling methods to survey saproxylic beetle assemblages in Mediterranean woodlands. J Insect Conserv 17:765–776CrossRefGoogle Scholar
  36. Ranius T (2002) Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biol Conserv 103:85–91CrossRefGoogle Scholar
  37. Ranius T, Jansson N (2002) A comparison of three methods to survey saproxylic beetles in hollow oaks. Biodivers Conserv 11:1759–1771CrossRefGoogle Scholar
  38. Ranius T, Niklasson M, Berg N (2009a) Development of tree hollows in pedunculate oak (Quercus robur). For Ecol Manag 257:303–310CrossRefGoogle Scholar
  39. Ranius T, Svensson GP, Berg N, Niklasson M, Larsson MC (2009b) The successional change of hollow oaks affects their suitability for an inhabiting beetle, Osmoderma eremita. Ann Zool Fenn 46:205–216CrossRefGoogle Scholar
  40. Reemer M (2005) Saproxylic hoverfly benefit by modern forest management (Diptera: Syrphidae). J Insect Conserv 9:49–59CrossRefGoogle Scholar
  41. Ricarte A, Marcos-García MA (2008) Los sírfidos (Diptera: Syrphidae) del Parque Nacional de Cabañeros (España): una herramienta para la gestión. Bol Asoc Esp Ent 32:19–32Google Scholar
  42. Ricarte A, Jover T, Marcos-García MA, Micó E, Brustel H (2009) Saproxylic beetles (Coleoptera) and hoverflies (Diptera: Syrphidae) from a Mediterranean forest: towards a better understanding of their biology and species conservation. J Nat Hist 43:583–607CrossRefGoogle Scholar
  43. Rotheray GE, Gilbert F (2011) The natural history of hoverflies. Forrest Text, TresaithGoogle Scholar
  44. Rotheray GE, MacGowan I (2000) Status and breeding sites of three presumed endangered Scottish saproxylic syrphids (Diptera, Syrphidae). J Insect Conserv 4:215–223CrossRefGoogle Scholar
  45. Saint-Germain M, Drapeau P, Buddle CM (2007) Host-use patterns of saproxylic phloeophagous and xylophagous Coleoptera adults and larvae along the decay gradient in standing dead black spruce and aspen. Ecography 30:737–748CrossRefGoogle Scholar
  46. Saint-Germain M, Buddle CM, Drapeau P (2010) Substrate selection by saprophagous wood-borer larvae within high variable hosts. Entomol Exp Appl 134:227–233CrossRefGoogle Scholar
  47. Schmidl J, Sulzer P, Kitching RL (2008) The insect assemblage in water filled tree-holes in a European temperate deciduous forest: community composition reflects structural, trophic and physicochemical factors. Hydrobiologia 598:285–303CrossRefGoogle Scholar
  48. Sebek P, Altman J, Platek M, Cizek L (2013) Is active management the key to the conservation of saproxylic biodiversity? Pollarding promotes the formation of tree hollows. PLoS One 8(3):e60456. doi: 10.1371/journal.pone.0060456 PubMedCrossRefPubMedCentralGoogle Scholar
  49. Sirami C, Jay-Robert P, Brustel H, Valladares L, Le Guilloux S, Martin JL (2008) Saproxylic beetles assemblages of old holm-oak trees in Mediterranean region: role of a keystone structure in a changing heterogeneous landscape. Rev Écol (Terre Vie) 10:101–114Google Scholar
  50. Speight MCD (1989) Saproxylic invertebrates and their conservation. Nature and environment, series 42. Council of Europe, StrasbourgGoogle Scholar
  51. Speight MCD, Monteil C, Castella E, Sarthou JP (2010) StN_2010. Syrph the Net on CD, Issue 7Google Scholar
  52. StatSoft Inc (2007) Statistica (data analysis software system). Version 8.0.
  53. Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, Cambridge, MACrossRefGoogle Scholar
  54. Systat software (2006) SigmaStat version 3.5.
  55. Thompson FC, Rotheray G (1998) Family Syrphidae. In: Papp L, Darvas B (eds) Contributions to a manual of Palaeartic Diptera. Science Herald, Budapest, pp 81–139Google Scholar
  56. Ulyshen MD, Hanula JL (2009) Habitat associations of saproxylic beetles in the southeastern United States: a comparison of forest type, tree species and wood postures. For Ecol Manag 257:653–664CrossRefGoogle Scholar
  57. Vaquero de la Cruz J (1997) Flora vascular y vegetación. In: García Canseco V (ed) Parque Nacional de Cabañeros. Ecohábitat, Madrid, pp 95–154Google Scholar
  58. Wallace HR (1954) The ecology of the insect fauna of pine stumps. J Anim Ecol 22:154–171CrossRefGoogle Scholar
  59. Winter S, Möller GC (2008) Microhabitats in lowland beech forests as monitoring tool for nature conservation. For Ecol Manag 255:1251–1261CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Javier Quinto
    • 1
    • 3
  • Estefanía Micó
    • 1
  • Ana Paola Martínez-Falcón
    • 2
  • Eduardo Galante
    • 1
  • María de los Ángeles Marcos-García
    • 1
  1. 1.Centro Iberoamericano de la Biodiversidad (CIBIO)Universidad de AlicanteAlicanteSpain
  2. 2.Instituto de Ecología A.C.XalapaMexico
  3. 3.Departamento de Ecología TropicalUniversidad Autónoma de Yucatán (UADY)MéridaMexico

Personalised recommendations