Journal of Insect Conservation

, Volume 18, Issue 5, pp 837–846 | Cite as

Species’ traits influence ground beetle responses to farm and landscape level agricultural intensification in Europe

  • Camilla Winqvist
  • Jan Bengtsson
  • Erik Öckinger
  • Tsipe Aavik
  • Frank Berendse
  • Lars W. Clement
  • Christina Fischer
  • Andreas Flohre
  • Flavia Geiger
  • Jaan Liira
  • Carsten Thies
  • Teja Tscharntke
  • Wolfgang W. Weisser
  • Riccardo Bommarco
ORIGINAL PAPER

Abstract

Agricultural intensification may result in important shifts in insect community composition and function, but this remains poorly explored. Studying how groups of species with shared traits respond to local and landscape scale land-use management can reveal mechanisms behind such observed impacts. We tested if ground beetles (Coleoptera: Carabidae) divided into trait groups based on body sizes, wing morphologies and dietary preferences respond differently to farming practise (organic and conventional), farming intensity (measured as yield) and landscape complexity (measured as the proportion of arable land within a 1,000 m radius) across Europe. We used data from 143 farms in five regions in northern and central Europe. Organic farms did not differ in abundance or richness of any trait group compared to conventional farms. As farm scale intensity (yield) increased, overall abundance of beetles decreased, but abundances of small and medium sized beetles, as well as that of wingless beetles, were unaffected. Overall species richness was not affected by yield, whereas consideration of traits revealed that phytophagous and omnivorous beetles were less species rich on farms with high yields. Increasing the proportion of arable land in the landscape increased overall beetle abundance. This was driven by an increase in omnivorous beetles. The total species richness was not affected by an increase in the proportion arable land, although the richness of wingless beetles was found to increase. Potential effects on ecosystem functioning need to be taken into account when designing schemes to maintain agricultural biodiversity, because species with different ecological traits respond differently to local management and landscape changes.

Keywords

Body size Diet Dispersal mode Functional biodiversity Landscape ecology Organic farming 

Supplementary material

10841_2014_9690_MOESM1_ESM.doc (45 kb)
Supplementary material 1 (DOC 45 kb)

References

  1. Aavik T, Liira J (2010) Quantifying the effect of organic farming, field boundary type and landscape structure of field boundaries. Agric Ecosyst Environ 135:178–186CrossRefGoogle Scholar
  2. Aviron S, Burel F, Baudry J, Schermann N (2005) Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. Agric Ecosyst Environ 108:205–217CrossRefGoogle Scholar
  3. Baars MA (1979) Catches in pitfall traps in relation to mean densities of carabid beetles. Oecologia 41:25–46CrossRefGoogle Scholar
  4. Barbaro L, van Halder I (2009) Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32:321–333CrossRefGoogle Scholar
  5. Bengtsson J, Ahnström J, Weibull A-C (2005) The effects of organic farming on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269CrossRefGoogle Scholar
  6. Blake S, Foster GN, Eyre MD, Luff ML (1994) Effects of habitat type and grassland management practices on the body size distribution of carabid beetles. Pedobiologia 38:502–512Google Scholar
  7. Bommarco R, Biesmeijer JC, Meyer B, Potts SG, Pöyry J, Roberts SPM, Steffan-Dewenter I, Öckinger E (2010) Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc R Soc Bio Sci Ser B 277:2075–2082CrossRefGoogle Scholar
  8. Burel F, Butet A, Delettre YR, Millàn de la Peña N (2004) Differential response of selected taxa to landscape context and agricultural intensification. Landsc Urb Plann 67:195–204CrossRefGoogle Scholar
  9. Büttner G, Feranec J, Jaffrain G (2002) Corine land cover update 2000: Technical guidelines. European Environmental Agency, Technical report 89, Copenhagen, DenmarkGoogle Scholar
  10. Clough Y, Kruess A, Tscharntke T (2007) Organic versus conventional arable farming systems: functional grouping helps understand staphylinid response. Agric Ecosyst Environ 118:285–290CrossRefGoogle Scholar
  11. de Bello F, Lavorel S, Diaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld C, Hering D, Martins da Silva P, Potts SG, Sandin L, Sousa JP, Strokey J, Wardle DA, Harrison P (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893CrossRefGoogle Scholar
  12. den Boer PJ (1990) The survival value of dispersal in terrestrial arthropods. Biol Conserv 54:175–192CrossRefGoogle Scholar
  13. Dennis P, Fry GLA (1992) Field margins: can they enhance natural enemy population densities and general arthropod diversity on farmland? Agric Ecosyst Environ 40:95–115CrossRefGoogle Scholar
  14. Dormann CF, Schweiger O, Augenstein I, Bailey D, Billeter R, de Blust G, deFilippi R, Frenzel M, Hendricks F, Herzhog F, Klotz S, Liira J, Maelfait J-P, Schmidt T, Speelmans M, van Wingerden WKRE, Zobel M (2007) Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Glob Ecol Biogeogr 16:774–787CrossRefGoogle Scholar
  15. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142PubMedCrossRefGoogle Scholar
  16. Federal Biological Research Centre for Agriculture and Forestry (2001) Growth stages of mono- and dicotyledonous plants, Meier, U (Eds.), Blackwell Wissenschattl, Berlin. pp. 14–18Google Scholar
  17. Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Trautman Richers B, Lin BB, Simpson N, Mayfield MM, DeClerk F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33PubMedCrossRefGoogle Scholar
  18. Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Oñate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hänke S, Fischer C, Goedhart PW, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105CrossRefGoogle Scholar
  19. Hendrickx F, Maelfait J-P, Desender K, Aviron S, Bailey D, Diekötter T, Lens L, Liira J, Schweiger O, Speelmans M, Vandomme V, Bugter R (2009) Pervasive effects of dispersal limitation on within-and among-community species richness in agricultural landscapes. Glob Ecol Biogeogr 18:607–616CrossRefGoogle Scholar
  20. Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130CrossRefGoogle Scholar
  21. Holland JM, Birkett T, Southway S (2009) Contrasting the farm-scale spatio-temporal dynamics of boundary and field overwintering predatory beetles in arable crops. Biol Control 54:19–33Google Scholar
  22. Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and the species-area relationship. Ecology 80:1495–1504CrossRefGoogle Scholar
  23. Honek A, Martinkova Z, Saska P, Pekar S (2007) Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera). Basic Appl Ecol 8:343–353CrossRefGoogle Scholar
  24. Hunter MD (2009) Trophic promiscuity, intraguild predation and the problem of omnivores. Agric For Entomol 11:125–131CrossRefGoogle Scholar
  25. Jennings N, Pocock MJO (2009) Relationships between sensitivity to agricultural intensification and ecological traits of insectivorous mammals and arthropods. Conserv Biol 23:1195–1203PubMedCrossRefGoogle Scholar
  26. Jonason D, Andersson GKS, Öckinger E, Smith HG, Bengtsson J (2012) Field scale organic farming does not counteract landscape effects on butterfly trait composition. Agric Ecosyst Environ 158:66–71CrossRefGoogle Scholar
  27. Kotze DJ, O’Hara RB (2003) Species decline- but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 135:138–148PubMedGoogle Scholar
  28. Kromp B (1989) Carabid beetle communities (Carabidae: coleoptera) in biologically and conventionally farmed agroecosystems. Agric Ecosyst Environ 27:241–251CrossRefGoogle Scholar
  29. Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264:1581–1584PubMedCrossRefGoogle Scholar
  30. Lang A (2000) The pitfalls of pitfalls: a comparison of pitfall trap catches and absolute density estimates of epigeal invertebrate predators in arable land. J Pest Sci 73:99–106Google Scholar
  31. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613CrossRefGoogle Scholar
  32. Liira J, Schmidt T, Aavik T, Arens P, Augenstein I, Bailey D, Billeter R, Bukáček R, Burel F, De Blust G, De Cock R, Dirksen J, Edwards P, Hamerský R, Herzog F, Klotz S, Kühn I, Le Coeur D, Miklová P, Roubalova M, Schweiger O, Smulders MJM, van Wingerden WKRE, Bugter R, Zobel M (2008) Plant functional group comparison and large-scale species richness in European agricultural landscapes. J Veg Sci 19:3–14CrossRefGoogle Scholar
  33. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS® for mixed models, 2nd edn. SAS Institute Inc., CaryGoogle Scholar
  34. Niemelä JE, Halme E, Haila Y (1990) Balancing sampling effort in pitfall trapping of carabid beetles. Entomol Fenn 1:233–238Google Scholar
  35. Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979PubMedGoogle Scholar
  36. Peters RH (1983) The ecological implications of body size. Cambridge University Press, New YorkCrossRefGoogle Scholar
  37. Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661CrossRefGoogle Scholar
  38. Purtauf T, Dauber J, Wolters V (2005a) The response of carabids to landscape simplification differs between trophic groups. Oecologia 142:458–464PubMedCrossRefGoogle Scholar
  39. Purtauf T, Roschewitz I, Dauber J, Thies C, Tscharntke T, Wolters V (2005b) Landscape context of organic and conventional farms: influences on carabid beetle diversity. Agric Ecosyst Environ 108:165–174CrossRefGoogle Scholar
  40. Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Biol Sci Ser B 267:1947–1952CrossRefGoogle Scholar
  41. Rand TA, Tylianakis J, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614PubMedCrossRefGoogle Scholar
  42. Ribera I, Dolédec S, Downie I, Foster GN (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82:1112–1129CrossRefGoogle Scholar
  43. Rundlöf M, Nilsson H, Smith G (2008) Interacting effects of farming practice and landscape context on bumble bees. Biol Conserv 141:417–426CrossRefGoogle Scholar
  44. Schweiger O, Maelfait JP, van Wingerden W, Hendrickx F, Billeter R, Speelmans M, Augenstein I, Aukema B, Aviron S, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Frenzel M, Herzog F, Liira J, Roubalova M, Bugter R (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42:1129–1139CrossRefGoogle Scholar
  45. Solbreck C (1978) Migration, diapause, and direct development as alternative life histories in a seed bug, Neacoryphus bicrucis. In: Dingle H (ed) Evolution of insect migration and diapause. Springer Verlag, Berlin, pp 195–217CrossRefGoogle Scholar
  46. Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:336–365CrossRefGoogle Scholar
  47. Stoate C, Boatman ND, Borralho RJ, Rio Carvalho C, de Snoo GR, Eden P (2001) Ecological impacts of agricultural intensification in Europe. J Environ Manag 63:337–365CrossRefGoogle Scholar
  48. Thiele H-U (1977) Carabid beetles in their environments: a study on habitat selection by adaptations in physiology and behaviour. Springer-Verlag, BerlinCrossRefGoogle Scholar
  49. Thies C, Roschewitz I, Tscharntke T (2005) The landscape context of cereal aphid-parasitoid interactions. Proc R Soc Biol Sci Ser B 272:203–210CrossRefGoogle Scholar
  50. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005a) Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  51. Tscharntke T, Rand TA, Bianchi FJJA (2005b) The landscape context of trophic interactions: insect spill-over across the crop-noncrop interface. Ann Zool Fen 42:421–432Google Scholar
  52. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RW, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis A, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol Rev 87:661–685PubMedCrossRefGoogle Scholar
  53. Vanbergen AJ, Woodcock BA, Watt AD, Niemelä J (2005) Effect of land-use heterogeneity on carabid communities at the landscape scale. Ecography 28:3–16CrossRefGoogle Scholar
  54. Winqvist C, Bengtsson J, Aavik T, Berendse F, Clement LW, Eggers S, Fischer C, Flohre A, Geiger F, Liira J, Pärt T, Thies C, Tscharntke T, Weisser WW, Bommarco R (2011) Mixed effects of organic farming and landscape complexity on farmland biodiversity and biocontrol potential. J Appl Ecol 48:570–579CrossRefGoogle Scholar
  55. Woodcock BA, Harrower C, Redhead J, Edwards M, Vanbergen AJ, Heard MS, Roy DB, Pywell RF (2014) National patterns of functional diversity and redundancy in predatory ground beetles and bees associated with key UK arable crops. J Appl Ecol 51:142–151CrossRefGoogle Scholar
  56. Woodward G, Hildrew AL (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71:1063–1074CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Camilla Winqvist
    • 1
  • Jan Bengtsson
    • 1
  • Erik Öckinger
    • 1
  • Tsipe Aavik
    • 2
  • Frank Berendse
    • 3
  • Lars W. Clement
    • 4
  • Christina Fischer
    • 5
    • 6
  • Andreas Flohre
    • 5
  • Flavia Geiger
    • 3
  • Jaan Liira
    • 2
  • Carsten Thies
    • 5
  • Teja Tscharntke
    • 5
  • Wolfgang W. Weisser
    • 4
  • Riccardo Bommarco
    • 1
  1. 1.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  3. 3.Nature Conservation and Plant Ecology GroupWageningen UniversityWageningenThe Netherlands
  4. 4.Terrestrial Ecology, Department of Ecology and Ecosystem Management, Center of Life and Food SciencesTechnische Universität MünchenFreisingGermany
  5. 5.Department of Crop Sciences, AgroecologyGeorg-August-UniversityGoettingenGermany
  6. 6.Restoration Ecology, Department of Ecology and Ecosystem ManagementTechnische Universität MünchenFreisingGermany

Personalised recommendations