Journal of Insect Conservation

, Volume 18, Issue 3, pp 497–508 | Cite as

Habitat requirements and dispersal ability of the Spanish Fritillary (Euphydryas desfontainii) in southern Portugal: evidence-based conservation suggestions for an endangered taxon

  • Frank PennekampEmail author
  • Patrícia Garcia-Pereira
  • Thomas Schmitt


A high level of plant and insect diversity, and more specifically high butterfly diversity characterizes the Mediterranean Basin. However, alarming negative trends have been reported for butterfly populations in that region emphasizing the urgent need to better understand the drivers of their population declines. Habitat specialists of grasslands are strongly affected, mainly by land use change and climate change. Thorough assessments of habitat requirements and dispersal abilities are crucial to establish appropriate conservation measures to counter these threats. Here, we investigate the ecological requirements and dispersal ability of Euphydryas desfontainii, one of Portugal’s rarest butterflies, to develop targeted conservation strategies. The assessment of habitat requirements showed differences between occupied and unoccupied patches in terms of host plant abundance and area. Mark–release–recapture data were used to model demographic parameters: survival rates decreased linearly over the flight period and recruitment followed a parabolic curve with separate peaks for males and females. The movement data were fitted to an inverse power function and used to predict the probability of long-distance dispersal. The obtained probabilities were compared to related checkerspot butterflies and interpreted regarding the structural connectivity of the investigated habitat network. We suggest focusing on the preservation of remaining habitat patches, whilst monitoring and safeguarding that their vegetation structure does provide sufficiently diversified microclimates in order to best conserve E. desfontainii populations.


Connectivity Dispersal kernel Habitat quality Mark–release–recapture Mediterranean region Metapopulation 



The study was legally approved by the Instituto da Conservação da Natureza, Lisbon. F. Pennekamp was partly funded by a grant from the lifelong learning program of the EU Commission, sponsored by Leonardo Kontakt Rheinland-Pfalz. We thank TAGIS—Centro de Conservação das Borboletas de Portugal for logistical support of the field study, Viktoriia Radchuck for advice in the analysis of the MRR data and Thomas Merckx for providing valuable comments on an earlier draft of the article.

Supplementary material

10841_2014_9655_MOESM1_ESM.docx (60 kb)
Supplementary material 1 (DOCX 59 kb)


  1. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure—the key for successful management of pre-alpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185CrossRefGoogle Scholar
  2. Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, New YorkGoogle Scholar
  3. Baguette M (2003) Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 26:153–160CrossRefGoogle Scholar
  4. Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol 22:1117–1129CrossRefGoogle Scholar
  5. Baguette M, Petit S, Queva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. J Appl Ecol 37:100–108CrossRefGoogle Scholar
  6. Baguette M, Clobert J, Schtickzelle N (2011) Metapopulation dynamics of the bog fritillary butterfly: experimental changes in habitat quality induced negative density-dependent dispersal. Ecography 34:170–176CrossRefGoogle Scholar
  7. Barbet-Massin M, Thuiller W, Jiguet F (2010) How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33:878–886. doi: 10.1111/j.1600-0587.2010.06181.x CrossRefGoogle Scholar
  8. Betzholtz PE, Ehrig A, Lindeborg M, Dinnetz P (2007) Food plant density, patch isolation and vegetation height determine occurrence in a Swedish metapopulation of the Marsh Fritillary Euphydryas aurinia (Rottemburg, 1775) (Lepidoptera, Nymphalidae). J Insect Conserv 11:343–350CrossRefGoogle Scholar
  9. Bink FA (1992) Ecologische atlas van de dagvlinders van Noordwest-Europa. Schuyt, HaarlemGoogle Scholar
  10. Bourn NAD, Thomas J (2002) The challenge of conserving grassland insects at the margins of their range in Europe. Biol Conserv 104:285–292CrossRefGoogle Scholar
  11. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225CrossRefPubMedGoogle Scholar
  12. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449CrossRefGoogle Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  14. Burnham K, Anderson D, Huyvaert K (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35CrossRefGoogle Scholar
  15. Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244CrossRefGoogle Scholar
  16. Dennis RLH, Schmitt T (2009) Faunal structures, phylogeography and historical inference. In: Settele J, Shreeve T, Konvička M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 250–258Google Scholar
  17. Dennis RLH, Dapporto L, Dover JW, Shreeve TG (2013) Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies. Biodivers Conserv 22:2709–2734. doi: 10.1007/s10531-013-0540-2 CrossRefGoogle Scholar
  18. Doerr VAJ, Barrett T, Doerr ED (2011) Connectivity, dispersal behaviour and conservation under climate change: a response to Hodgson. J Appl Ecol 48:143–147. doi: 10.1111/j.1365-2664.2010.01899.x CrossRefGoogle Scholar
  19. Ehrlich PR (1992) Population biology of checkerspot butterflies and the preservation of global biodiversity. Oikos 63:6–12. doi: 10.2307/3545510 CrossRefGoogle Scholar
  20. Ehrlich PR, Hanski I (2004) On the wings of checkerspots: a model system for population biology. First printing. Oxford University Press, New YorkGoogle Scholar
  21. Fowles AP, Smith RG (2006) Mapping the habitat quality of patch networks for the Marsh Fritillary Euphydryas aurinia (Rottemburg, 1775) (Lepidoptera, Nymphalidae) in Wales. J Insect Conserv 10:161–177CrossRefGoogle Scholar
  22. Fric Z, Konvicka M (2007) Dispersal kernels of butterflies: power-law functions are invariant to marking frequency. Basic Appl Ecol 8:377–386CrossRefGoogle Scholar
  23. Fric Z, Hula V, Klimova M, Zimmermann K, Konvicka M (2010) Dispersal of four fritillary butterflies within identical landscape. Ecol Res 25:543–552. doi: 10.1007/s11284-009-0684-4 CrossRefGoogle Scholar
  24. Habel JC, Schmitt T (2012) The burden of genetic diversity. Biol Conserv 147:270–274. doi: 10.1016/j.biocon.2011.11.028 CrossRefGoogle Scholar
  25. Habel JC, Dengler J, Janišová M, Török P, Wellstein C, Wiezik M (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodivers Conserv 22:2131–2138. doi: 10.1007/s10531-013-0537-x CrossRefGoogle Scholar
  26. Haddad NM (1999) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9:612–622. doi:10.1890/1051-0761(1999)009[0612:CADEOI]2.0.CO;2Google Scholar
  27. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  28. Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea Cinxia. Ecology 75:747–762CrossRefGoogle Scholar
  29. Harrison S, Murphy DD, Ehrlich PR (1988) Distribution of the bay checkerspot butterfly, Euphydryas editha bayensis: evidence for a metapopulation model. Am Nat 132:360–382CrossRefGoogle Scholar
  30. Heer P, Pellet J, Sierro A, Arlettaz R (2013) Evidence-based assessment of butterfly habitat restoration to enhance management practices. Biodivers Conserv 22:239–252. doi: 10.1007/s10531-012-0417-9 CrossRefGoogle Scholar
  31. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32CrossRefGoogle Scholar
  32. Hewitt GM (2011) Mediterranean peninsulas: the evolution of hotspots. In: Zachos FE, Habel JC (eds) Biodiversity hotspots. Springer, Berlin, pp 123–147CrossRefGoogle Scholar
  33. Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735. doi: 10.2307/5671 CrossRefGoogle Scholar
  34. Hodgson JA, Thomas CD, Wintle BA, Moilanen A (2009) Climate change, connectivity and conservation decision making: back to basics. J Appl Ecol 46:964–969. doi: 10.1111/j.1365-2664.2009.01695.x CrossRefGoogle Scholar
  35. Hodgson JA, Moilanen A, Wintle BA, Thomas CD (2011) Habitat area, quality and connectivity: striking the balance for efficient conservation. J Appl Ecol 48:148–152. doi: 10.1111/j.1365-2664.2010.01919.x CrossRefGoogle Scholar
  36. Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29. doi: 10.1111/j.1461-0248.2004.00686.x CrossRefGoogle Scholar
  37. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108CrossRefPubMedGoogle Scholar
  38. Junker M, Schmitt T (2010) Demography, dispersal and movement pattern of Euphydryas aurinia (Lepidoptera: Nymphalidae) at the Iberian Peninsula: an alarming example in an increasingly fragmented landscape? J Insect Conserv 14:237–246CrossRefGoogle Scholar
  39. Kadoya T (2008) Assessing functional connectivity using empirical data. Popul Ecol 51:5–15. doi: 10.1007/s10144-008-0120-6 CrossRefGoogle Scholar
  40. Konvička M, Kuras T (1999) Population structure, behaviour and selection of oviposition sites of an endangered butterfly, Parnassius mnemosyne, in Litovelské Pomoravíl. Czech Republic. J Insect Conserv 3:211–223CrossRefGoogle Scholar
  41. Kotiaho JS, Kaitala V, Komonen A, Päivinen J (2005) Predicting the risk of extinction from shared ecological characteristics. Proc Natl Acad Sci USA 102:1963–1967PubMedCentralCrossRefPubMedGoogle Scholar
  42. Krohmer J, Deil U (1999) Landnutzungswandel in der Sierra de Monchique (Südportugal) in Abhängigkeit von natürlichen und anthropogenen Bedingungen. Geoökodynamik 20:169–192Google Scholar
  43. Lawton JH, Brotherton PNM, Brown VK, Elphick C, Fitter AH, Forshaw J, Haddow RW, Hilborne S, Leafe RN, Mace GM, Southgate MP, Sutherland WA, Tew TE, Varley J, Wynne GR (2010) Making space for nature: a review of England’s wildlife sites and ecological network. Report to DefraGoogle Scholar
  44. Mabberley DJ, Placito PJ (1993) Algarve plants and landscapes: passing tradition and ecological change. Oxford University Press, New YorkGoogle Scholar
  45. Maravalhas E (2003) The butterflies of Portugal. Apollo Books, StenstrupGoogle Scholar
  46. Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv Biol 13:1510–1513CrossRefGoogle Scholar
  47. Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547CrossRefPubMedGoogle Scholar
  48. Munguira ML, Martín J, García-Barros E, Viejo JL (1997) Use of space and resources in a Mediterranean population of the butterfly Euphydryas aurinia. Acta Oecol 18:597–612CrossRefGoogle Scholar
  49. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  50. Novoa Pérez J, García-Villanueva V (1996) Biología y distribución geográfica de Euphydryas desfontainii (Godart, 1819) en el suroeste de la Península Ibérica (Lepidoptera: Nymphalidae). Shilap Rev Lepidopterol 94:213–222Google Scholar
  51. Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979. doi: 10.1111/j.1461-0248.2010.01487.x PubMedGoogle Scholar
  52. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology packageGoogle Scholar
  53. Pennekamp F, Monteiro E, Schmitt T (2013) The larval ecology of the butterfly Euphydryas desfontainii (Lepidoptera: Nymphalidae) in SW-Portugal: food plant quantity and quality as main predictors of habitat quality. J Insect Conserv 17:195–206. doi: 10.1007/s10841-012-9497-9 CrossRefGoogle Scholar
  54. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  55. Schneider C, Dover J, Fry GLA (2003) Movement of two grassland butterflies in the same habitat network: the role of adult resources and size of the study area. Ecol Entomol 28:219–227. doi: 10.1046/j.1365-2311.2003.00494.x CrossRefGoogle Scholar
  56. Schtickzelle N, Le Boulenge E, Baguette M (2002) Metapopulation dynamics of the bog fritillary butterfly: demographic processes in a patchy population. Oikos 97:349–360CrossRefGoogle Scholar
  57. Schtickzelle N, Choutt J, Goffart P, Fichefet V, Baguette M (2005) Metapopulation dynamics and conservation of the Marsh Fritillary butterfly: population viability analysis and management options for a critically endangered species in Western Europe. Biol Conserv 126:569–581CrossRefGoogle Scholar
  58. Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture–recapture experiments in open populations. Biometrics 52:860–873Google Scholar
  59. Settele J, Kudrna O, Harpke A, Kühn I, Van Swaay C, Verovnik R, Warren MS, Wiemers M, Hanspach J, Hickler T (2008) Climatic risk atlas of European butterflies. Pensoft Sofia, MoscowGoogle Scholar
  60. Settele J, Dover J, Dolek M, Konvička M (2009) Butterflies of European ecosystems: impact of land use and options for conservation management. In: Settele J, Shreeve TG, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 353–370Google Scholar
  61. Stefanescu C, Planas J, Shaw MR (2009) The parasitoid complex attacking coexisting Spanish populations of Euphydryas aurinia and Euphydryas desfontainii (Lepidoptera: Nymphalidae, Melitaeini). J Nat Hist 43:553–568CrossRefGoogle Scholar
  62. Stefanescu C, Carnicer J, Peñuelas J (2011a) Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography 34:353–363. doi: 10.1111/j.1600-0587.2010.06264.x CrossRefGoogle Scholar
  63. Stefanescu C, Torre I, Jubany J, Páramo F (2011b) Recent trends in butterfly populations from north-east Spain and Andorra in the light of habitat and climate change. J Insect Conserv 15:83–93CrossRefGoogle Scholar
  64. Stevens VM, Baguette M (2008) Importance of habitat quality and landscape connectivity for the persistence of endangered Natterjack toads. Conserv Biol 22:1194–1204CrossRefPubMedGoogle Scholar
  65. Stevens VM, Turlure C, Baguette M (2010) A meta-analysis of dispersal in butterflies. Biol Rev 85:625–642PubMedGoogle Scholar
  66. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond B 268:1791–1796CrossRefGoogle Scholar
  67. Thomas JA, Simcox DJ, Hovestadt T (2010) Evidence based conservation of butterflies. J Insect Conserv 15:241–258. doi: 10.1007/s10841-010-9341-z CrossRefGoogle Scholar
  68. Tolman T, Lewington R (1998) Die Tagfalter Europas und Nordwestafrikas. Franckh-Kosmos Verlag, StuttgartGoogle Scholar
  69. Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181CrossRefGoogle Scholar
  70. Van Swaay C, Warren M, Loïs G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209. doi: 10.1007/s10841-006-6293-4 CrossRefGoogle Scholar
  71. van Swaay CAM, van Strien AJ, Harpke A, Fontaine B, Stefanescu C, Roy D, Maes D, Kühn E, Õunap E, Regan E, Švitra G, Heliölä J, Settele J, Pettersson LB, Titeux N, Cornish N, Leopold P, Julliard R, Verovnik R, Popov S, Collins S, Goloshchapova S, Roth T, Brereton T, Warren MS (2013) The European grassland butterfly indicator: 1990–2011. EEA Technical report, LuxembourgGoogle Scholar
  72. Wahlberg N, Klemetti T, Hanski I (2002a) Dynamic populations in a dynamic landscape: the metapopulation structure of the Marsh Fritillary butterfly. Ecography 25:224–232CrossRefGoogle Scholar
  73. Wahlberg N, Klemetti T, Selonen V, Hanski I (2002b) Metapopulation structure and movements in five species of checkerspot butterflies. Oecologia 130:33–43Google Scholar
  74. Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69. doi: 10.1038/35102054 CrossRefPubMedGoogle Scholar
  75. White GC, Burnham KP (1999) Programm MARK: Survival estimation from populations of marked animals. Bird study 46:120–139CrossRefGoogle Scholar
  76. Wilson RJ, Maclean IMD (2011) Recent evidence for the climate change threat to Lepidoptera and other insects. J Insect Conserv 15:259–268CrossRefGoogle Scholar
  77. Zimmermann K, Blazkova P, Cizek O, Fric Z, Hula V, Kepka P, Novotny D, Slamova I, Konvicka M (2011a) Demography of adults of the Marsh Fritillary butterfly, Euphydryas aurinia (Lepidoptera: Nymphalidae) in the Czech Republic: patterns across sites and seasons. Eur J Entomol 108:243–254CrossRefGoogle Scholar
  78. Zimmermann K, Fric Z, Jiskra P, Kopeckova M, Vlasanek P, Zapletal M, Konvicka M (2011b) Mark–recapture on large spatial scale reveals long distance dispersal in the Marsh Fritillary, Euphydryas aurinia. Ecol Entomol 36:499–510. doi: 10.1111/j.1365-2311.2011.01293.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Frank Pennekamp
    • 1
    • 2
    • 3
    Email author
  • Patrícia Garcia-Pereira
    • 4
  • Thomas Schmitt
    • 2
    • 5
    • 6
  1. 1.Earth and Life InstituteUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of BiogeographyTrier UniversityTrierGermany
  3. 3.Institute of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
  4. 4.National Museum of Natural History and ScienceLisbonPortugal
  5. 5.Senckenberg German Entomological InstituteMünchebergGermany
  6. 6.Zoology, Faculty of Natural Science I, Institute of BiologyMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations