Advertisement

Journal of Insect Conservation

, Volume 18, Issue 3, pp 373–384 | Cite as

Scorpion diversity in two different habitats in the Arid Chaco, Argentina

  • Mónica F. NimeEmail author
  • Fernando Casanoves
  • Camilo I. Mattoni
ORIGINAL PAPER

Abstract

Scorpions are one of the most important taxa of predators in terms of density, biomass, and diversity in various areas of the world. In this study, we compared population- and community-level data between a mature and a secondary forest in the Chancaní Reserve (Córdoba, Argentina). Scorpions were collected using pitfall traps (54 nights per site), and their nocturnal activity was observed by means of UV light (26 nights per site) over 7 months. Seven species of scorpions (1964 individuals) were observed in the study area (Bothriuridae and Buthidae). Brachistosternus ferrugineus composed >74 % of all individuals and was numerically dominant in most months. It was the most common species sampled with UV light method in all months (85.73 % in mature and 81.80 % in secondary forest). Timogenes elegans was the most common species sampled with the pitfall traps method in secondary forest (48.58 %). General sex ratio (males:females) for B. ferrugineus was 1:1.24 and for T. elegans was 1:0.53. The Shannon index was not significantly different between sites. Species richness was similar, and the Jaccard index was Cs = 0.86, indicating that both sites share 86 % of the species. Tityus confluens was the only species not shared between sites. Our results indicate that species composition in regenerating forest resembles that of primary forest after c. 15 years, but the relative abundances of these species differ.

Keywords

Scorpiones Arid Chaco Mature forest Secondary forest Diversity Habitat 

Notes

Acknowledgments

We are grateful to the Secretaría de Ambiente (Gobierno de la Provincia de Córdoba), for allowing access to work in the Chancaní Reserve. We thank José Gonzalez for assisting us in the field and Joss Heywood for help with the English language. We thank the editor and the anonymous reviewer for suggestions to improve the manuscript. This research was supported by a doctoral grant from the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET) to MN. Fieldwork was supported by a Rufford Small Grants Foundation award to MN, and by a SECYT (UNC) grant 214/10 to CIM. CIM is a CONICET researcher.

References

  1. Acosta LE (1993) Escorpiones y opiliones de la provincia de Córdoba (Argentina): diversidad y zoogeografía. Bull Soc Neuchât Sci Nat 116:11–17Google Scholar
  2. Acosta LE (1995a) The scorpions of the Argentinian Western Chaco I. Diversity and distributional patterns. Biogeographica 71:49–59Google Scholar
  3. Acosta LE (1995b) The Scorpions of the Argentinian Western Chaco II. Community survey in the Llanos District. Biogeographica (Paris) 7:187–196Google Scholar
  4. Acosta LE, Peretti AV (1998) Complemento a la descripción de Bothriurus bonariensis (Scorpiones, Bothriuridae) con anotaciones sobre patrones evolutivos del género en Argentina. Rev Arachnol 12:95–108Google Scholar
  5. Araújo CS, Candido DM, Araújo HFP, de Dias SC, Vasconcellos A (2010) Seasonal variations in scorpionactivities (Arachnida: Scorpiones) in an area of Caatinga vegetation in northeastern Brazil. Zoologia 27:372–376CrossRefGoogle Scholar
  6. Bertani R, Martins R, De Carvalho MA (2005) Notes on Tityus confluens Borelli, 1899 (Scorpiones: Buthidae) in Brazil. Zootaxa 869:1–7Google Scholar
  7. Blockhus JM, Dillenbeck M, Sayer JA, Wegge P (1992) Conserving biological diversity in managed tropical forests. IUCN/ITTO, GlandGoogle Scholar
  8. Bradley RA (1986) The relationship between population density of Paruroctonus utahensis (Scorpionida: Vaejovidae) and characteristics of its habitat. J Arid Environ 11:165–171Google Scholar
  9. Bradley RA, Brody AJ (1984) Relative abundance of three vaejovid scorpions across a habitat gradient. J Arachnol 11:437–440Google Scholar
  10. Brown CA, Davis JM, O’Connell DJ, Formanowiz DR Jr (2002) Surface density and nocturnal activity in a west Texas assemblage of scorpions. Southwest Nat 47:409–419CrossRefGoogle Scholar
  11. Bucher EH (1982) Chaco and Caatinga—South American arid savannas, Woodlands and thickets. Ecol Stud 42:48–79CrossRefGoogle Scholar
  12. Buddle CM, Langor DW, Pohl GR, Spence JR (2006) Arthropod responses to harvesting and wildfire: implications for emulation of natural disturbance in forest management. Biol Conserv 128:346–357CrossRefGoogle Scholar
  13. Cala-Riquelme F, Colombo M (2011) Ecology of the scorpion, Microtityus jaumei in Sierra de Canasta, Cuba. J Insect Sci (Tucson) 11:1–10CrossRefGoogle Scholar
  14. Canaday C (1996) Loss of insectivorous birds along a gradient of human impact in Amazonia. Biol Conserv 77:63–77CrossRefGoogle Scholar
  15. Carmo RFR, Amorim HP, Vasconcelos SD (2013) Scorpion diversity in two types of seasonally dry tropical forest in the semi-arid region of Northeastern Brazil. Biota Neotrop 13(2):340–344CrossRefGoogle Scholar
  16. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar
  17. Fet V, Polis GA, Sissom WD (1998) Life in sandy deserts: the scorpion model. J Arid Environ 39:609–622CrossRefGoogle Scholar
  18. Gertsch WJ, Allred DM (1965) Scorpions of the Nevada Test Site. Brigham Young Univ Sci Bull Biol Ser 6:1–15Google Scholar
  19. Grigera D, Pavic C (2007) Ensambles de aves en un sitio quemado y en un sitio no alterado en un área forestal del noroeste de la Patagonia, Argentina. Hornero 22:29–37Google Scholar
  20. Halffter G (1992) La Diversidad Biológica de Iberoamérica. Programa iberoamericano de ciencia y tecnología para el desarrollo. Instituto de ecología, A.C. secretaría de desarrollo social, MéxicoGoogle Scholar
  21. Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351CrossRefGoogle Scholar
  22. Honetschlager LD (1965) A new method for hunting scorpions. Turtox News 43:69–70Google Scholar
  23. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 52:187–211CrossRefGoogle Scholar
  24. Jiménez-Jiménez ML, Palacios-Cardiel C (2010) Scorpions of desert oases in the southern Baja California Peninsula. J Arid Environ 74:70–74CrossRefGoogle Scholar
  25. Johns AG, Johns BG (1995) Tropical forest and primates: long term co-existence. Oryx 29:205–211CrossRefGoogle Scholar
  26. Koch LE (1978) A comparative study of the structure, function and adaptation to different habitats of burrows in the scorpion genus Urodacus (Scorpionida, Scorpionidae). Rec West Aust Mus 6:119–146Google Scholar
  27. Kunst C, Bravo S (2003) Fuego, calor y temperatura. In: Kunst C, Bravo S, Panigatti JL (eds) Fuego en los Ecosistemas Argentinos. Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, pp 39–45Google Scholar
  28. Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, Hammond PM, Hodda M, Holt RD, Larsen TB, Mawdsley NA, Stork NE, Srivastava DS, Watt AD (1998) Biodiversity inventories, indicator taxa, and effects of habitat modification in tropical forest. Nature 391:72–76CrossRefGoogle Scholar
  29. Lazzeri MG, Bar ME, Damborsky MP (2011) Diversidad del orden Lepidoptera (Hesperioidea y Papilionoidea) de la ciudad de Corrientes, Argentina. Rev Biol Trop 59:299–308Google Scholar
  30. Lindsay EA, Cunningham SA (2009) Livestock grazing exclusion and microhabitat variation affect invertebrates and litter decomposition rates in woodland remnants. For Ecol Manag 258:178–187CrossRefGoogle Scholar
  31. Lourenço WR (1994) Diversity and endemism in tropical versus temperate scorpion communities. Biogeographica 70(3):155–160Google Scholar
  32. Lourenço WR, Aparecida Da Silva E (2007) New evidence for a disrupted distribution pattern of the ‘Tityus confluens’ complex, with the description of a new species from State of Pará, Brazil (Scorpiones, Buthidae). Amazoniana 19:77–86Google Scholar
  33. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, PrincetonCrossRefGoogle Scholar
  34. Margules CR, Milkovits GA, Smith GT (1994) Constrasting effects of habitat fragmentation on the scorpion Cercophonius Squama and an amphipod. Ecology 75:2033–2042CrossRefGoogle Scholar
  35. Marshall AG, Swaine MD (1992) Tropical rain forest: disturbance and recovery. Phil Trans R Soc Lond B 335:323–457CrossRefGoogle Scholar
  36. Moreno CE (2001) Métodos para medir la biodiversidad, vol 1. M&T-Manuales y Tesis SEA, ZaragozaGoogle Scholar
  37. Newlands G (1972) Ecological adaptations of Kruger National Park Scorpionids (Arachnida: Scorpionides). Koedoe 15:37–48CrossRefGoogle Scholar
  38. Newlands G (1978) Arachnida (except Acari). In: Werger MJA (ed) Biogeography and ecology of Southern Africa. The Hague, pp 685–702Google Scholar
  39. Nime MF, Casanoves F, Vrech DE, Mattoni CI (2013) Relationship between environmental variables and surface activity of scorpions in the Arid Chaco ecoregion of Argentina. Invertebr Biol 132:145–155CrossRefGoogle Scholar
  40. Ojanguren-Affilastro AA (2005) Estudio monográfico de los escorpiones de la República Argentina. Rev Iber Aracnol 11:75–241Google Scholar
  41. Ojanguren-Affilastro AA, Vezzani D (2001) Nuevo registro de Ananteris balzani (Scorpiones: Buthidae) para la Argentina y ampliación de la distribución geográfica de Bothriurus cordubensis (Scorpiones: Bothriuridae). Physis 58:15–22Google Scholar
  42. Oliver IO, Beattie AJ (1996) Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversty. Ecol Appl 6:594–607CrossRefGoogle Scholar
  43. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938CrossRefGoogle Scholar
  44. Pande S, Pawashe A, Bastawade DB, Kulkarni PP (2004) Scorpions and molluscs: some new dietary records for Spotted Owlet Athene brama in India. New Ornis 1:68–70Google Scholar
  45. Pande S, Bastawade DB, Padhye A, Pawase A (2012) Diversity of scorpion fauna of Saswad-Jejuri, Pune district, Maharashtra, Western India. JoTT 4:2381–2389Google Scholar
  46. Pelegrin N, Bucher EH (2010) Long-term effects of a wildfire on a lizard assemblage in the Arid Chaco forest. J Arid Environ 74:368–372CrossRefGoogle Scholar
  47. Polis GA (1980) Seasonal patterns and age-specific variation in the surface activity of a population of desert scorpions in relation to environmental factors. J Anim Ecol 49:1–18CrossRefGoogle Scholar
  48. Polis GA (1990) The biology of scorpions. Standford University Press, StandfordGoogle Scholar
  49. Polis GA (1993) Scorpions as model vehicles to advance theories of population and community ecology: the role of scorpions in desert communities. Mem Queensl Mus 33:401–410Google Scholar
  50. Polis GA, McCormick SJ (1986) Patterns of resource use and age structure among species of desert scorpion. J Anim Ecol 55:59–74CrossRefGoogle Scholar
  51. Polis GA, McCormick SJ (1987) Intraguild predation and competition among desert scorpions. Ecology 68:332–343CrossRefGoogle Scholar
  52. Polis GA, Yamashita T (1991) The ecology and importance of predaceous arthropods in desert communities. In: Polis GA (ed) The ecology of desert communities. University of Arizona Press, Tucson, pp 180–222Google Scholar
  53. Prendergast JR, Eversham BC (1997) Species richness covariance in higher taxa: empirical test of the biodiversity indicator concept. Ecography 20:210–216CrossRefGoogle Scholar
  54. Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337CrossRefGoogle Scholar
  55. Prendini L (2001) Substratum specialization and speciation in southern African scorpions: the effect hypothesis revisited. In: Fet V, Selden PA (eds) Scorpions 2001. British Arachnological Society, Burnham Beeches, pp 113–138 (In Memoriam Gary A. Polis)Google Scholar
  56. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, URL http://www.R-project.org/
  57. Ruiz-Cobo DH, Bueno-Villegas J, Feijoo-Martínez A (2010) Uso de la tierra y diversidades alfa, beta y gamma de diplópodos en la cuenca del río Otún, Colombia. Univ Sci (online) 15:59–67Google Scholar
  58. Sileshi G, Mafongoya PL (2006) The short-term impact of forest fire on soil invertebrates in the Miombo. Biodivers Conserv 15:3153–3160CrossRefGoogle Scholar
  59. Sissom WD, Polis GA, Watt DD (1990) Field and laboratory methods. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford, pp 445–461Google Scholar
  60. Smith GT (1966) Observations on the life history of the scorpion Urodacus abruptus Pocock (Scorpionidae), and an analysis of its home sites. Aust J Zool 14:383–398CrossRefGoogle Scholar
  61. Stahnke HL (1966) Some aspects of scorpion behavior. Bull South Calif Acad Sci 65:65–80Google Scholar
  62. Teasdale LC, Smith AL, Thomas M, Whitehead CA, Driscoll DA (2013) Detecting invertebrate responses to fire depends on sampling method and taxonomic resolution. Austral Ecol 38:874–883CrossRefGoogle Scholar
  63. Trueman JWH, Cranston PS (1997) Prospects for the rapid assessment of terrestrial invertebrate biodiversity. Mem Mus Vic 56:349–354Google Scholar
  64. Verga EG, Leynaud GC, Lescano JN, Bellis LM (2012) Is livestock grazing compatible with amphibian diversity in the High Mountains of Córdoba, Argentina? Eur J Wildl Res 58:823–832CrossRefGoogle Scholar
  65. Warburg MR (1997) Biogeographic and demographic changes in the distribution and abundance of scorpions inhabiting the Mediterranean region in northern Israel. Biodivers Conserv 6:1377–1389CrossRefGoogle Scholar
  66. Warburg MR, Ben-Horin A (1978) Temperature and humidity effects on scorpion distribution in Northern Israel. Symp Zool Soc Lond 42:161–169Google Scholar
  67. Warburg MR, Polis GA (1990) Behavioral responses, rhythms and activity patterns. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford, pp 224–246Google Scholar
  68. Whitmore TC, Sayer JA (1992) Tropical deforestation and species extinctions. Chapman and Hall, LondonGoogle Scholar
  69. Whitmore C, Slotow R, Crouch TE, Dippenaar-Schoeman AS (2002) Diversity of spiders (Araneae) in a savanna reserve, Northern Province, South Africa. J Arachnol 30:344–356CrossRefGoogle Scholar
  70. Wikars LO, Schimmel J (2001) Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. For Ecol Manag 141:189–200CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mónica F. Nime
    • 1
    Email author
  • Fernando Casanoves
    • 2
  • Camilo I. Mattoni
    • 1
  1. 1.Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), CONICETUniversidad Nacional de Córdoba (UNC)CórdobaArgentina
  2. 2.Unidad de Bioestadística del Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)Costa RicaArgentina

Personalised recommendations