Journal of Insect Conservation

, Volume 18, Issue 3, pp 283–294 | Cite as

Is the matrix important to butterflies in fragmented landscapes?

  • Nici SweaneyEmail author
  • David B. Lindenmayer
  • Don A. Driscoll


The quality and extent of the ‘matrix’ in terrestrial fragmented landscapes may influence the persistence and behaviour of patch-associated fauna. Butterflies are a popular target group for fragmentation studies and represent an ideal assemblage to explore the impact and role of the matrix in patchy landscapes. To date, there has been no attempt to synthesise available research and assess the extent to which the matrix is included in studies of fragmented butterfly populations. Addressing this issue is important for improved understanding of habitat use in fragmented landscapes, and for the successful management and conservation of butterfly biodiversity. Our systematic review of 100 empirical research papers spans 50 years, and identifies how (and indeed if) the matrix is recognised in studies of butterfly populations in fragmented landscapes. We found that it was significantly more likely for studies not to include the matrix in their experimental design. This is of particular concern given 60 % of papers that excluded the matrix in their research did so in systems where the matrix was expected to contain resources of value for patch-associated species (as it was either a heterogeneous landscape or had similar structure to patches). Of the papers that did consider the matrix, 80 % (n = 24) reported a negative effect of the matrix on butterfly species and/or communities. Matrix effects may influence the survival and persistence of faunal groups in a world increasingly dominated by fragmented habitats. Our review suggests that future research should clearly define the matrix, and incorporate it in appropriate experimental designs.


Matrix Butterfly Lepidoptera Review Fragmentation 

Supplementary material

10841_2014_9641_MOESM1_ESM.docx (90 kb)
Supplementary material 1 (DOCX 90 kb)


  1. Baguette M (2004) The classical metapopulation theory and the real, natural world: a critical appraisal. Basic Appl Ecol 5(3):213–224. doi: 10.1016/j.baae.2004.03.001 CrossRefGoogle Scholar
  2. Baguette M, Mennechez G, Petit S, Schtickzelle N (2003) Effect of habitat fragmentation on dispersal in the butterfly Proclossiana eunomia. C R Biol 326(Supplement 1):200–209. doi: 10.1016/s1631-0691(03)00058-1 CrossRefGoogle Scholar
  3. Batary P, Koroesi A, Oervoessy N, Koever S, Peregovits L (2009) Species-specific distribution of two sympatric Maculinea butterflies across different meadow edges. J Insect Conserv 13:223–230Google Scholar
  4. Barbaro L, van Halder I (2009) Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecology 32:321–333Google Scholar
  5. Baum KA, Haynes KJ, Dillemuth FP, Cronin JT (2004) The matrix enhances the effectiveness of corridors and stepping stones. Ecology 85(10):2671–2676. doi: 10.1890/04-0500 CrossRefGoogle Scholar
  6. Bender DJ, Fahrig L (2005) Matrix structure obscures the relationship between interpatch movement and patch size and isolation. Ecology 86(4):1023–1033CrossRefGoogle Scholar
  7. Bergerot B, Julliard R, Baguette M (2010) Metacommunity dynamics: decline of functional relationship along a habitat fragmentation gradient. PLoS One 5(6):e11294. doi: 10.1371/journal.pone.0011294 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bergman KO, Askling J, Ekberg O, Ignell H, Wahlman H, Milberg P (2004) Landscape effects on butterfly assemblages in an agricultural region. Ecography 27(5):619–628. doi: 10.1111/j.0906-7590.2004.03906.x CrossRefGoogle Scholar
  9. Boggs CL (1992) Resource allocation: exploring connections between foraging and life history. Funct Ecol 6(5):508–518. doi: 10.2307/2390047 CrossRefGoogle Scholar
  10. Brady M, McAlpine C, Possingham H, Miller C, Baxter G (2011) Matrix is important for mammals in landscapes with small amounts of native forest habitat. Landsc Ecol 26(5):617–628. doi: 10.1007/s10980-011-9602-6 CrossRefGoogle Scholar
  11. Brueckmann SV, Krauss J, van Achterberg C, Steffan-Dewenter I (2010) The impact of habitat fragmentation on trophic interactions of the monophagous butterfly Polyommatus coridon. J Insect Conserv 15(5):707–714. doi: 10.1007/s10841-010-9370-7 CrossRefGoogle Scholar
  12. Bukovinszky T, Potting RPJ, Clough Y, van Lenteren JC, Vet LEM (2005) The role of pre- and post-alighting detection mechanisms in the responses to patch size by specialist herbivores. Oikos 109(3):435–446. doi: 10.1111/j.0030-1299.2005.13707.x CrossRefGoogle Scholar
  13. Bunnell FL (1999) What habitat is an Island? In: Rochelle JA, Lehmann LA, Wisniewski J (eds) Forest wildlife and fragmentation management implications. Koninklijike Brill NV, LeidenGoogle Scholar
  14. Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landsc Ecol 18(6):561–573. doi: 10.1023/a:1026062530600 CrossRefGoogle Scholar
  15. Collinge SK (2009) Ecology of fragmented landscapes. John Hopkins University Press, MarylandGoogle Scholar
  16. Collinge SK, Prudic KL, Oliver JC (2003) Effects of local habitat characteristics and landscape context on grassland butterfly diversity. Conserv Biol 17(1):178–187. doi: 10.1046/j.1523-1739.2003.01315.x CrossRefGoogle Scholar
  17. Cozzi G, Mueller CB, Krauss J (2008) How do local habitat management and landscape structure at different spatial scales affect fritillary butterfly distribution on fragmented wetlands? Landsc Ecol 23(3):269–283. doi: 10.1007/s10980-007-9178-3 CrossRefGoogle Scholar
  18. Crow TR, Gustafson EG (1997) Ecosystem management: managing natural resources in space and time. In: Kohm KA, Franklin JF (eds) Creating a forestry for the 21st century. Island Press, Covelo, pp 215–228Google Scholar
  19. Davis JD, Debinski DM, Danielson BJ (2007) Local and landscape effects on the butterfly community in fragmented Midwest USA prairie habitats. Landsc Ecol 22:1341–1354Google Scholar
  20. Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments (Sondeo y Revisión de Experimentos de Fragmentación de Hábitat). Conserv Biol 14(2):342–355. doi: 10.1046/j.1523-1739.2000.98081.x CrossRefGoogle Scholar
  21. Dennis RLH (2004) Butterfly habitats, broad-scale biotope affiliations, and structural exploitation of vegetation at finer scales: the matrix revisited. Ecol Entomol 29(6):744–752. doi: 10.1111/j.0307-6946.2004.00646.x CrossRefGoogle Scholar
  22. Dennis RL (2012) A resource-based habitat view for conservation: butterflies in the British landscape. Wiley, LondonGoogle Scholar
  23. Dennis RLH, Shreeve TG, Dyck HV (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102(2):417–426. doi: 10.2307/3548046 CrossRefGoogle Scholar
  24. Dennis RLH, Hodgson JG, Grenyer R, Shreeve TG, Roy DB (2004) Host plants and butterfly biology. Do host-plant strategies drive butterfly status? Ecol Entomol 29(1):12–26. doi: 10.1111/j.1365-2311.2004.00572.x CrossRefGoogle Scholar
  25. Dennis RH, Shreeve T, Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15(6):1943–1966. doi: 10.1007/s10531-005-4314-3 CrossRefGoogle Scholar
  26. Dennis RH, Dapporto L, Dover J, Shreeve T (2013) Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies. Biodivers Conserv 22(12):2709–2734. doi: 10.1007/s10531-013-0540-2 CrossRefGoogle Scholar
  27. Didham RK, Ewers RM (2012) Predicting the impacts of edge effects in fragmented habitats: Laurance and Yensen’s core area model revisited. Biol Conserv 155:104–110. doi: 10.1016/j.biocon.2012.06.019 CrossRefGoogle Scholar
  28. Dover JW (1996) Factors affecting the distribution of satyrid butterflies on arable farmland. J Appl Ecol 33(4):723–734CrossRefGoogle Scholar
  29. Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13(1):3–27. doi: 10.1007/s10841-008-9135-8 CrossRefGoogle Scholar
  30. Driscoll MJL, Donovan TM (2004) Landscape context moderates edge effects: nesting success of wood thrushes in central New York. Conserv Biol 18:1330–1338CrossRefGoogle Scholar
  31. Driscoll DA, Lindenmayer DB (2012) Framework to improve the application of theory in ecology and conservation. Ecol Monogr 82(1):129–147. doi: 10.1890/11-0916.1 CrossRefGoogle Scholar
  32. Driscoll DA, Banks SC, Barton PS, Lindenmayer DB, Smith AL (2013) Conceptual domain of the matrix in fragmented landscapes. Trends Ecol Evol 28(10):605–613PubMedCrossRefGoogle Scholar
  33. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  34. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G (2008) Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. FASEB J 22(2):338–342PubMedCrossRefGoogle Scholar
  35. Fiedler K, Maschwitz U (1989) The symbiosis between the weaver ant, Oecophylla smaragdina, and Anthene emolus, an obligate myrmecophilous lycaenid butterfly. J Nat Hist 23(4):833–846. doi: 10.1080/00222938900770441 CrossRefGoogle Scholar
  36. Fischer J, Lindenmayer DB, Fazey I (2004) Appreciating ecological complexity: habitat contours as a conceptual landscape model. Conserv Biol 18(5):1245–1253. doi: 10.1111/j.1523-1739.2004.00263.x CrossRefGoogle Scholar
  37. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574. doi: 10.1126/science.1111772 PubMedCrossRefGoogle Scholar
  38. Forister ML, Gompert Z, Nice CC, Forister GW, Fordyce JA (2011) Ant association facilitates the evolution of diet breadth in a lycaenid butterfly. Proc R Soc B: Biol Sci 278(1711):1539–1547. doi: 10.1098/rspb.2010.1959 CrossRefGoogle Scholar
  39. Fowles AP, Smith RG (2006) Mapping the habitat quality of patch networks for the marsh fritillary Euphydryas aurinia (Rottemburg, 1775) (Lepidoptera, Nymphalidae) in Wales. J Insect Conserv 10:161–177Google Scholar
  40. Franklin JF, Lindenmayer DB (2009) Importance of matrix habitats in maintaining biological diversity. Proc Nat Acad Sci 106(2):349–350. doi: 10.1073/pnas.0812016105 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Franklin AB, Noon BR, George LT (2002) What is habitat fragmentation? Stud Avian Biol 25:20–29Google Scholar
  42. Franzén M, Ranius T (2004) Occurrence patterns of butterflies (Rhopalocera) in semi-natural pastures in southeastern Sweden. J Nat Conserv 12(2):121–135. doi: 10.1016/j.jnc.2004.06.001 CrossRefGoogle Scholar
  43. Gascon C, Lovejoy TE, Bierregaard RO Jr, Malcolm JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91(2–3):223–229. doi: 10.1016/s0006-3207(99)00080-4 CrossRefGoogle Scholar
  44. Goodwin BJ, Fahrig L (2002) How does landscape structure influence landscape connectivity? Oikos 99(3):552–570. doi: 10.1034/j.1600-0706.2002.11824.x CrossRefGoogle Scholar
  45. Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6(1):153–175. doi: 10.1023/a:1018335901847 CrossRefGoogle Scholar
  46. Gutierrez D, Thomas CD, Leon-Cortes JL (1999) Dispersal, distribution, patch network and metapopulation dynamics of the dingy skipper butterfly (Erynnis tages). Oecologia 121(4):506–517. doi: 10.1007/s004420050957 CrossRefGoogle Scholar
  47. Hall LS, Krausman PR, Morrison ML (1997) The habitat concept and a plea for standard terminology. Wildl Soc Bull 25(1):173–182. doi: 10.2307/3783301 Google Scholar
  48. Harrisson K, Pavlova A, Amos J, Takeuchi N, Lill A, Radford J, Sunnucks P (2012) Fine-scale effects of habitat loss and fragmentation despite large-scale gene flow for some regionally declining woodland bird species. Landsc Ecol 27(6):813–827. doi: 10.1007/s10980-012-9743-2 CrossRefGoogle Scholar
  49. Hudgens BR, Haddad NM (2003) Predicting which species will benefit from corridors in fragmented landscapes from population growth models. Am Nat 161(5):808–820. doi: 10.1086/374343 PubMedCrossRefGoogle Scholar
  50. Jauker F, Diekötter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc Ecol 24(4):547–555. doi: 10.1007/s10980-009-9331-2 CrossRefGoogle Scholar
  51. Jorge SM (1992) Island biogeography and conservation practice. Conserv Biol 6(2):161. doi: 10.1046/j.1523-1739.1992.620161.x CrossRefGoogle Scholar
  52. Jules ES, Shahani P (2003) A broader ecological context to habitat fragmentation: why matrix habitat is more important than we thought. J Veg Sci 14(3):459–464. doi: 10.1111/j.1654-1103.2003.tb02172.x CrossRefGoogle Scholar
  53. Kennedy CM, Marra PP, Fagan WF, Neel MC (2010) Landscape matrix and species traits mediate responses of Neotropical resident birds to forest fragmentation in Jamaica. Ecol Monogr 80(4):651–669CrossRefGoogle Scholar
  54. Kingsolver JG, Woods HA, Buckley LB, Potter KA, MacLean HJ, Higgins JK (2011) Complex life cycles and the responses of insects to climate change. Integr Comp Biol 51(5):719–732. doi: 10.1093/icb/icr015 PubMedCrossRefGoogle Scholar
  55. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30(6):889–900. doi: 10.1046/j.1365-2699.2003.00878.x CrossRefGoogle Scholar
  56. Krauss J, Schmitt T, Seitz A, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polyommatus coridon along its northern range margin. Mol Ecol 13(2):311–320. doi: 10.1046/j.1365-294X.2003.02072.x PubMedCrossRefGoogle Scholar
  57. Krauss J, Steffan-Dewenter I, Muller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28(4):465–474. doi: 10.1111/j.0906-7590.2005.04201.x CrossRefGoogle Scholar
  58. Kremen C (1994) Biological inventory using target taxa: a case study of the butterflies of Madagascar. Ecol Appl 4(3):407–422CrossRefGoogle Scholar
  59. Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N (2010) The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91(4):944–950. doi: 10.1890/09-0614.1 PubMedCrossRefGoogle Scholar
  60. Kumar S, Simonson SE, Stohlgren TJ (2009) Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA. Biodivers Conserv 18:739–763Google Scholar
  61. Kupfer JA, Malanson GP, Franklin SB (2006) Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Glob Ecol Biogeogr 15(1):8–20. doi: 10.1111/j.1466-822X.2006.00204.x CrossRefGoogle Scholar
  62. Leidner AK, Haddad NM (2010) Natural, not urban, barriers define population structure for a coastal endemic butterfly. Conserv Genet 11(6):2311–2320. doi: 10.1007/s10592-010-0117-5 CrossRefGoogle Scholar
  63. Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. CSIRO Publishing, CanberraGoogle Scholar
  64. Lindenmayer DB, Franklin JF (2002) Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press, WashingtonGoogle Scholar
  65. Lindenmayer DB, Wood JT, Cunningham RB, Crane M, Macgregor C, Michael D, Montague-Drake R (2009) Experimental evidence of the effects of a changed matrix on conserving biodiversity within patches of native forest in an industrial plantation landscape. Landsc Ecol 24(8):1091–1103. doi: 10.1007/s10980-008-9244-5 CrossRefGoogle Scholar
  66. Lomov B, Keith DA, Britton DR, Hochuli DF (2006) Are butterflies and moths useful indicators for restoration monitoring? A pilot study in Sydney’s Cumberland Plain Woodland. Ecol Manag Restor 7(3):204–210. doi: 10.1111/j.1442-8903.2006.00310.x CrossRefGoogle Scholar
  67. Marin L, Leon-Cortes JL, Stefanescu C (2009) The effect of an agro-pasture landscape on diversity and migration patterns of frugivorous butterflies in Chiapas, Mexico. Biodivers Conserv 18:919–934Google Scholar
  68. Moran NA (1994) Adaptation and constraint in the complex life cycles of animals. Annu Rev Ecol Syst 25 (ArticleType: research-article/Full publication date: 1994/Copyright© 1994 Annual Reviews):573–600. doi: 10.2307/2097325
  69. Muriel SB, Kattan GH (2009) Effects of patch size and type of coffee matrix on ithomiine butterfly diversity and dispersal in cloud-forest fragments. Conserv Biol 23(4):948–956. doi: 10.1111/j.1523-1739.2009.01213.x PubMedCrossRefGoogle Scholar
  70. Nowicki P, Pepkowska A, Kudlek J, Skorka P, Witek M, Settele J, Woyciechowski M (2007) From metapopulation theory to conservation recommendations: lessons from spatial occurrence and abundance patterns of Maculinea butterflies. Biol Conserv 140:119–129Google Scholar
  71. Ockinger E, Smith HG (2006) Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia 149(3):526–534. doi: 10.1007/s00442-006-0464-6 PubMedCrossRefGoogle Scholar
  72. Öckinger E, Van Dyck H (2012) Landscape structure shapes habitat finding ability in a butterfly. PLoS One 7(8):e41517. doi: 10.1371/journal.pone.0041517 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13(8):969–979. doi: 10.1111/j.1461-0248.2010.01487.x PubMedGoogle Scholar
  74. Payne RW, Harding SA, Murray DA, Soutar DM, Baird DB, Glaser AI, Welham SJ, Gilmour AR, Thompson R, Webster R (2011) GenStat Release 14. VSN International, Hemel Hempstead, Hertfordshire HP1 1ES, UKGoogle Scholar
  75. Pearson SM, Turner MG, Gardner RH, O’Neill RV (1996) An organism-based perspective of habitat fragmentation. In: Szaro RC, Johnston DW (eds) Principles of biodiversity. Oxford University Press, New York, pp 77–95Google Scholar
  76. Prevedello J, Vieira M (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19(5):1205–1223. doi: 10.1007/s10531-009-9750-z CrossRefGoogle Scholar
  77. Prudic KL, Khera S, Solyom A, Timmermann BN (2007) Isolation, identification, and quantification of potential defensive compounds in the viceroy butterfly and its larval host-plant, Carolina willow. J Chem Ecol 33(6):1149–1159. doi: 10.1007/s10886-007-9282-5 PubMedCrossRefGoogle Scholar
  78. Revilla E, Wiegand T, Palomares F, Ferreras P, Delibes M (2004) Effects of matrix heterogeneity on animal dispersal: from individual behavior to metapopulation-level parameters. Am Nat 164(5):E130–E153. doi: 10.1086/424767 PubMedCrossRefGoogle Scholar
  79. Ribeiro DB, Prado PI, Brown KS Jr, Freitas AVL (2008) Additive partitioning of butterfly diversity in a fragmented landscape: importance of scale and implications for conservation. Divers Distrib 14(6):961–968. doi: 10.1111/j.1472-4642.2008.00505.x CrossRefGoogle Scholar
  80. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158(1):87–99PubMedCrossRefGoogle Scholar
  81. Rickman JK, Connor EF (2003) The effect of urbanization on the quality of remnant habitats for leaf-mining lepidoptera on Quercus agrifolia. Ecography 26(6):777–787CrossRefGoogle Scholar
  82. Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J Anim Ecol 70(5):840–852. doi: 10.1046/j.0021-8790.2001.00546.x CrossRefGoogle Scholar
  83. Ries L, Sisk TD (2008) Butterfly edge effects are predicted by a simple model in a complex landscape. Oecologia 156:75–86Google Scholar
  84. Ries L, Sisk TD (2010) What is an edge species? The implications of sensitivity to habitat edges. Oikos 119(10):1636–1642. doi: 10.1111/j.1600-0706.2010.18414.x CrossRefGoogle Scholar
  85. Rodrigues D, Kaminski L, Freitas AL, Oliveira P (2010) Trade-offs underlying polyphagy in a facultative ant-tended florivorous butterfly: the role of host plant quality and enemy-free space. Oecologia 163(3):719–728. doi: 10.1007/s00442-010-1626-0 PubMedCrossRefGoogle Scholar
  86. Roland J, Keyghobadi N, Fownes S (2000) Alpine Parnassius butterfly dispersal: effects of landscape and population size. Ecology 81(6):1642–1653CrossRefGoogle Scholar
  87. Rosin ZM, Skorka P, Lenda M, Moron D, Sparks TH, Tryjanowski P (2011) Increasing patch area, proximity of human settlement and larval food plants positively affect the occurrence and local population size of the habitat specialist butterfly Polyommatus coridon (Lepidoptera: Lycaenidae) in fragmented calcareous grasslands. Eur J Entomol 108:99–106Google Scholar
  88. Ross JA, Matter SF, Roland J (2005a) Edge avoidance and movement of the butterfly Parnassius smintheus in matrix and non-matrix habitat. Landsc Ecol 20(2):127–135. doi: 10.1007/s10980-004-1010-8 CrossRefGoogle Scholar
  89. Ross JA, Matter SF, Roland J (2005b) Edge avoidance and movement of the butterfly Parnassius smintheus in matrix and non-matrix habitat. Landsc Ecol 20(2):127–135. doi: 10.1007/s10980-004-1010-8 CrossRefGoogle Scholar
  90. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5(1):18–32. doi: 10.1111/j.1523-1739.1991.tb00384.x CrossRefGoogle Scholar
  91. Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. J Anim Ecol 72(4):533–545. doi: 10.1046/j.1365-2656.2003.00723.x CrossRefGoogle Scholar
  92. Schtickzelle N, Mennechez G, Baguette M (2006) Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87(4):1057–1065PubMedCrossRefGoogle Scholar
  93. Schwab AC, Zandbergen PA (2011) Vehicle-related mortality and road crossing behavior of the Florida panther. Appl Geogr 31(2):859–870. doi: 10.1016/j.apgeog.2010.10.015 CrossRefGoogle Scholar
  94. Simberloff DS, Abele LG (1976) Island biogeography theory and conservation practice. Science 191(4224):285–286PubMedCrossRefGoogle Scholar
  95. Stasek DJ, Bean C, Crist TO (2008) Butterfly abundance and movements among prairie patches: the roles of habitat quality, edge, and forest matrix permeability. Environ Entomol 37(4):897–906. doi:10.1603/0046-225x(2008)37[897:baamap];2PubMedCrossRefGoogle Scholar
  96. Steffan-Dewenter I, Tscharntke T (2002) Insect communities and biotic interactions on fragmented calcareous grasslands: a mini review. Biol Conserv 104(3):275–284. doi: 10.1016/s0006-3207(01)00192-6 CrossRefGoogle Scholar
  97. Summerville KS, Crist TO (2001) Effects of experimental habitat fragmentation on patch use by butterflies and skippers (Lepidoptera). Ecology 82(5):1360–1370. doi:10.1890/0012-9658(2001)082[1360:EOEHFO]2.0.CO;2CrossRefGoogle Scholar
  98. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363Google Scholar
  99. Turner MG (2005) Landscape ecology: what is the state of the science? Annual review of ecology, evolution, and systematics 36 (ArticleType: research-article/Full publication date: 2005/Copyright© 2005 Annual Reviews):319–344. doi: 10.2307/30033807
  100. van Halder I, Barbaro L, Corcket E, Jactel H (2008) Importance of semi-natural habitats for the conservation of butterfly communities in landscapes dominated by pine plantations. Biodivers Conserv 17(5):1149–1169. doi: 10.1007/s10531-007-9264-5 CrossRefGoogle Scholar
  101. van Halder I, Barbaro L, Jactel H (2011) Conserving butterflies in fragmented plantation forests: are edge and interior habitats equally important? J Insect Conserv 15:591–601Google Scholar
  102. Vandermeer J, Carvajal R (2001) Metapopulation dynamics and the quality of the matrix. Am Nat 158(3):211–220PubMedCrossRefGoogle Scholar
  103. Warren M, Bourn N (2011) Ten challenges for 2010 and beyond to conserve Lepidoptera in Europe. J Insect Conserv 15(1):321–326. doi: 10.1007/s10841-010-9356-5 CrossRefGoogle Scholar
  104. Weiss SB, Murphy DD, White RR (1988) Sun, slope, and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69(5):1486–1496. doi: 10.2307/1941646 CrossRefGoogle Scholar
  105. Wettstein W, Schmid B (1999) Conservation of arthropod diversity in montane wetlands: effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers. J Appl Ecol 36(3):363–373. doi: 10.1046/j.1365-2664.1999.00404.x CrossRefGoogle Scholar
  106. Wood PA, Samways MJ (1991) Landscape element pattern and continuity of butterfly flight paths in an ecologically landscaped botanical garden, Natat, South-Africa. Biol Conserv 58:149–166Google Scholar
  107. Yamaura Y, Kawahara T, Iida S, Ozaki K (2008) Relative importance of the area and shape of patches to the diversity of multiple taxa. Conserv Biol 22(6):1513–1522. doi: 10.1111/j.1523-1739.2008.01024.x PubMedCrossRefGoogle Scholar
  108. Zschokke S, Dolt C, Rusterholz HP, Oggier P, Braschler B, Thommen GH, Ludin E, Erhardt A, Baur B (2000) Short-term responses of plants and invertebrates to experimental small-scale grassland fragmentation. Oecologia 125:559–572Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nici Sweaney
    • 1
    Email author
  • David B. Lindenmayer
    • 1
  • Don A. Driscoll
    • 1
  1. 1.ARC Centre of Excellence for Environmental Decisions, The NERP Environmental Decisions Hub, Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralia

Personalised recommendations