Advertisement

Journal of Insect Conservation

, Volume 18, Issue 1, pp 1–12 | Cite as

Does the surrounding landscape heterogeneity affect the butterflies of insular grassland reserves? A contrast between composition and configuration

  • Jana SlancarovaEmail author
  • Jiri Benes
  • Michal Kristynek
  • Pavel Kepka
  • Martin Konvicka
ORIGINAL PAPER

Abstract

Landscape homogenisation represents one of the gravest threats to the biodiversity of intensively farmed landscapes. In such landscapes, many species persist within remnants of (semi)natural habitats, such as in the steppe grasslands of Southern Moravia, SE Czech Republic. We investigated how the butterfly fauna of insular grassland reserves is affected by the heterogeneity of the surrounding farmland. We followed two lines of evidence, one based on species richness, the other on species community composition, considering two aspects of landscape heterogeneity, composition (amount of land cover types) and configuration (geometry of land cover patches). After statistically correcting for individual reserves characteristics, and within-reserves biotope composition, we found that reserves amidst heterogeneous landscapes contained more species. With increasing buffers around the reserves, the strength of the effects decreased for landscape composition, and increased for landscape configuration. Similar patterns applied for the butterfly assemblage composition, but in a rather subtle manner, not reflecting a specialist versus generalist dichotomy. However, more red-listed species inclined towards reserves amidst heterogeneous matrices. The species most tightly associated with heterogeneous landscapes were those whose populations likely span across multiple patches of relatively rare biotopes, whereas those indifferent to configuration were either those persisting at isolated sites, or those utilising common biotope types outside the reserves. The importance of landscape configuration suggests that relatively cheap restoration measures aimed at compartmentalisation the currently huge farmland units may substantially contribute to preserving biodiversity in intensively farmed regions.

Keywords

Butterfly communities Calcareous grasslands GIS Insect conservation Lepidoptera Species richness 

Notes

Acknowledgments

Funding for this study was provided by Grant Agency of the Czech Republic (P505/10/2167) and the University of South Bohemia (114/2012/P, 144/2010/P).

Supplementary material

10841_2013_9607_MOESM1_ESM.docx (23 kb)
Appendix 1 List of the 38 South Moravian steppic grassland reserves with their main characteristics and numbers of butterfly and burnet moths species (A—ALL, S—STEPPIC, N—NON-STEPPIC)
10841_2013_9607_MOESM2_ESM.docx (106 kb)
Appendix 2 Systematic list of butterfly and burnet moth species recorded in the 38 South Moravian steppic grassland reserves

References

  1. Aviron S, Jeanneret P, Schupbach B, Herzog F (2007) Effects of agri-environmental measures, site and landscape conditions on butterfly diversity of Swiss grassland. Agr Ecosyst Environ 122:295–304. doi: 10.1016/j.agee.2006.12.035 CrossRefGoogle Scholar
  2. Benes J, Konvicka M, Dvorak J, Fric Z, Havelka Z, Pavlicko A, Vrabec V, Weidenhoffer Z (2002) Motyli Ceske republiky: Rozsireni a ochrana I. Spolecnost pro ochranu motylu, PrahaGoogle Scholar
  3. Benes J, Kepka P, Konvicka M (2003) Limestone quarries as refuges for European xerophilous butterflies. Conserv Biol 17:1058–1069. doi: 10.1046/j.1523-1739.2003.02092.x CrossRefGoogle Scholar
  4. Bergman KO, Askling J, Ekberg O, Ignell H, Wahlman H, Milberg P (2004) Landscape effects on butterfly assemblages in an agricultural region. Ecography 27:619–628. doi: 10.1111/j.0906-7590.2004.03906.x CrossRefGoogle Scholar
  5. Bergman KO, Ask L, Askling J, Ignell H, Wahlman H, Milberg P (2008) Importance of boreal grasslands in Sweden for butterfly diversity and effects of local and landscape habitat factors. Biodivers Conserv 17:139–153. doi: 10.1007/s10531-007-9235-x CrossRefGoogle Scholar
  6. Chytry M, Kucera T, Koci M (2001) Katalog biotopu Ceske republiky. AOPK CR, PrahaGoogle Scholar
  7. Cizek O, Zamecnik J, Tropek R, Kocarek P, Konvicka M (2012) Diversification of mowing regime increases arthropods diversity in species-poor cultural hay meadows. J Insect Conserv 16:215–226. doi: 10.1007/s10841-011-9407-6 CrossRefGoogle Scholar
  8. Cizek O, Vrba P, Benes J, Hrazsky Z, Koptik J, Kucera T, Marhoul P, Zamecnik J, Konvicka M (2013) Conservation potential of abandoned military areas matches that of established reserves: plants and butterflies in the Czech Republic. PLoS ONE 8:e53124PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cowley MJR, Thomas CD, Roy DB, Wilson RJ, Leon-Cortes JL, Gutierrez D, Bulman CR, Quinn RM, Moss D, Gaston KJ (2001) Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. J Anim Ecol 70:410–425. doi: 10.1046/j.1365-2656.2001.00508.x CrossRefGoogle Scholar
  10. Croxton PJ, Hann JP, Greatorex-Davies JN, Sparks TH (2005) Linear hotspots? The floral and butterfly diversity of green lanes. Biol Conserv 121:579–584. doi: 10.1016/j.biocon.2004.06.008 CrossRefGoogle Scholar
  11. Dapporto L, Dennis RLH (2013) The generalist-specialist continuum: testing predictions for distribution and trends in British butterflies. Biol Conserv 157:229–236. doi: 10.1016/j.biocon.2012.09.016 CrossRefGoogle Scholar
  12. Dennis RLH, Hardy PB (2007) Support for mending the matrix: resource seeking by butterflies in apparent non-resource zones. J Insect Conserv 11:157–168. doi: 10.1007/s10841-006-9032-y CrossRefGoogle Scholar
  13. Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426. doi: 10.1034/j.1600-0579.2003.12492.x CrossRefGoogle Scholar
  14. Dormann CF, Schweiger O, Augenstein I, Bailey D, Billeter R, de Blust G, DeFilippi R, Frenzel M, Hendrickx F, Herzog F, Klotz S, Liira J, Maelfait JP, Schmidt T, Speelmans M, van Wingerden WKRE, Zobel M (2007) Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Global Ecol Biogeogr 16:774–787. doi: 10.1111/j.1466-8238.2007.00344.x CrossRefGoogle Scholar
  15. Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13:3–27. doi: 10.1007/s10841-008-9135-8 CrossRefGoogle Scholar
  16. Dover JW, Spencer S, Collins S, Hadjigeorgiou I, Rescia A (2011) Grassland butterflies and low intensity farming in Europe. J Insect Conserv 15:129–137. doi: 10.1007/s10841-010-9332-0 CrossRefGoogle Scholar
  17. Duelli P (1997) Biodiversity evaluation in agricultural landscapes: an approach at two different scales. Agr Ecosyst Environ 62:81–91. doi: 10.1016/S0167-8809(96)01143-7 CrossRefGoogle Scholar
  18. Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4:129–138. doi: 10.1078/1439-1791-00140 CrossRefGoogle Scholar
  19. Ekroos J, Heliola J, Kuussaari M (2010) Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes. J Appl Ecol 47:459–467. doi: 10.1111/j.1365-2664.2009.01767.x CrossRefGoogle Scholar
  20. ESRI (Environmental Systems Research Institute) (1999) ArcView GIS Version 3.2. Redlands, CaliforniaGoogle Scholar
  21. Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74. doi: 10.1016/s0006-3207(00)00208-1 CrossRefGoogle Scholar
  22. Farkac J, Kral D, Skorpik M (2005) Cerveny seznam ohrozenych druhu Ceske republiky. Bezobratli. List of threatened species in the Czech Republic. Invertebrates. AOPK CR, PrahaGoogle Scholar
  23. Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fenn 43:335–347Google Scholar
  24. Flick T, Feagan S, Fahrig L (2012) Effects of landscape structure on butterfly species richness and abundance in agricultural landscapes in eastern Ontario, Canada. Agr Ecosyst Environ 156:123–133. doi: 10.1016/j.agee.2012.05.006 CrossRefGoogle Scholar
  25. Freckleton RP, Gill JA, Noble D, Watkinson AR (2005) Large-scale population dynamics, abundance-occupancy relationships and the scaling from local to regional population size. J Anim Ecol 74:353–364. doi: 10.1111/j.1365-2656.2005.00931.x CrossRefGoogle Scholar
  26. Grill A, Knoflach B, Cleary DFR, Kati V (2005) Butterfly, spider, and plant communities in different land-use types in Sardinia, Italy. Biodivers Conserv 14:1281–1300. doi: 10.1007/s10531-004-1661-4 CrossRefGoogle Scholar
  27. Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156CrossRefGoogle Scholar
  28. Halley JM, Dempster JP (1996) The spatial population dynamics of insects exploiting a patchy food resource: a model study of local persistence. J Appl Ecol 33:439–454CrossRefGoogle Scholar
  29. Hannus JJ, von Numers M (2008) Vascular plant species richness in relation to habitat diversity and island area in the Finnish Archipelago. J Biogeogr 35:1077–1086. doi: 10.1111/j.1365-2699.2007.01862.x CrossRefGoogle Scholar
  30. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  31. Hermann G (1994) Habitatbindung Gefahrdung und Schutz des Ulmenzipfelfalters (Satyrium w-album Knoch 1782) in Baden-Wurttemberg mit Anmerkungen zur Verbreitung (Lepidoptera, Lycaenidae). Jahrshefte des Gesellschaft für Naturkunde Wurttemberg 149:223–236Google Scholar
  32. Holusa J, Kocarek P, Marhoul P, Skokanova H (2012) Platycleis vittata (Orthoptera: Tettigoniidae) in the northwestern part of its range is close to extinction: is this the result of landscape changes? J Insect Conserv 16:295–303. doi: 10.1007/s10841-012-9462-7 CrossRefGoogle Scholar
  33. Illan JG, Gutierrez D, Wilson RJ (2010) Fine-scale determinants of butterfly species richness and composition in a mountain region. J Biogeogr 37:1706–1720. doi: 10.1111/j.1365-2699.2010.02314.x CrossRefGoogle Scholar
  34. Jarosik V, Konvicka M, Pysek P, Kadlec T, Benes J (2011) Conservation in a city: do the same principles apply to different taxa? Biol Conserv 144:490–499. doi: 10.1016/j.biocon.2010.10.002 CrossRefGoogle Scholar
  35. Jeanneret P, Schupbach B, Luka H (2003) Quantifying the impact of landscape and habitat features on biodiversity in cultivated landscapes. Agr Ecosyst Environ 98:311–320. doi: 10.1016/S0167-8809(03)00091-4 CrossRefGoogle Scholar
  36. Jonason D, Milberg P, Bergman KO (2010) Monitoring of butterflies within a landscape context in south-eastern Sweden. J Nat Conserv 18:22–33. doi: 10.1016/j.jnc.2009.02.001 CrossRefGoogle Scholar
  37. Jonsen ID, Fahrig L (1997) Response of generalist and specialist insect herbivores to landscape spatial structure. Landsc Ecol 12:185–197CrossRefGoogle Scholar
  38. Kadlec T, Benes J, Jarosik V, Konvicka M (2008) Revisiting urban refuges: changes of butterfly and burnet fauna in Prague reserves over three decades. Landsc Urban Plan 85:1–11. doi: 10.1016/j.landurbplan.2007.07.007 CrossRefGoogle Scholar
  39. Kadlec T, Tropek R, Konvicka M (2012) Timed surveys and transect walks as comparable methods for monitoring butterflies in small plots. J Insect Conserv 16:275–280. doi: 10.1007/s10841-011-9414-7 CrossRefGoogle Scholar
  40. Kleijn D, Kohler F, Baldi A, Batary P, Concepcion ED, Clough Y, Diaz M, Gabriel D, Holzschuh A, Knop E, Kovacs A, Marshall EJP, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. P R Soc B 276:903–909. doi: 10.1098/rspb.2008.1509 CrossRefGoogle Scholar
  41. Konvicka M, Zimmermann K, Klimova M, Hula V, Fric Z (2012) Inverse link between density and dispersal distance in butterflies: field evidence from six co-occurring species. Popul Ecol 54:91–101. doi: 10.1007/s10144-011-0277-2 CrossRefGoogle Scholar
  42. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900. doi: 10.1046/j.1365-2699.2003.00878.x CrossRefGoogle Scholar
  43. Lastuvka Z, Liska J (2005) Seznam motylu Ceske republiky (Checklist of Lepidoptera of the Czech Republic) (Insecta: Lepidoptera). http://www.lepidoptera.wz.cz. Accessed 20 February 2013
  44. Li HB, Reynolds JF (1994) A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology 75:2446–2455CrossRefGoogle Scholar
  45. Maes D, Van Dyck H (2001) Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol Conserv 99:263–276. doi: 10.1016/S0006-3207(00)00182-8 CrossRefGoogle Scholar
  46. Microsoft Corporation (2007) Microsoft Office Access 2007. Part of Microsoft Office EnterpriseGoogle Scholar
  47. Morris MG (2000) The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol Conserv 95:129–142. doi: 10.1016/s0006-3207(00)00028-8 CrossRefGoogle Scholar
  48. Ockinger E, Smith HG (2006) Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia 149:526–534. doi: 10.1007/s00442-006-0464-6 PubMedCrossRefGoogle Scholar
  49. Ockinger E, Van Dyck H (2012) Landscape structure shapes habitat finding ability in a butterfly. PLoS ONE 7:e41517. doi: 10.1371/journal.pone.0041517 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Ockinger E, Bergman KO, Franzen M, Kadlec T, Krauss J, Kuussaari M, Poyry J, Smith HG, Steffan-Dewenter I, Bommarco R (2012a) The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landsc Ecol 27:121–131. doi: 10.1007/s10980-011-9686-z CrossRefGoogle Scholar
  51. Ockinger E, Lindborg R, Sjodin NE, Bommarco R (2012b) Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography 35:259–267. doi: 10.1111/j.1600-0587.2011.06870.x CrossRefGoogle Scholar
  52. OECD (2003) Agri-environmental policy measures: overview of developments. Ordination for Economic Cooperation and Development, ParisGoogle Scholar
  53. Ouin A, Burel F (2002) Influence of herbaceous elements on butterfly diversity in hedgerow agricultural landscapes. Agr Ecosst Environ 93:45–53CrossRefGoogle Scholar
  54. Pe’er G, Heinz SK, Frank K (2006) Connectivity in heterogeneous landscapes: analyzing the effect of topography. Landsc Ecol 21:47–61. doi: 10.1007/s10980-005-1622-7 CrossRefGoogle Scholar
  55. Pollard E (1979) Population ecology and change in range of the white admiral butterfly Ladoga camilla L. in England. Ecol Entomol 4:61–74. doi: 10.1111/j.1365-2311.1979.tb00561.x CrossRefGoogle Scholar
  56. Polus E, Vandewoestijne S, Choutt J, Baguette M (2007) Tracking the effects of one century of habitat loss and fragmentation on calcareous grassland butterfly communities. Biodivers Conserv 16:3423–3436. doi: 10.1007/s10531-006-9008-y CrossRefGoogle Scholar
  57. Reif J, Storch D, Vorisek P, Stastny K, Bejcek V (2008) Bird-habitat associations predict population trends in central European forest and farmland birds. Biodivers Conserv 17:3307–3319. doi: 10.1007/s10531-008-9430-4 CrossRefGoogle Scholar
  58. Rundlof M, Smith HG (2006) The effect of organic farming on butterfly diversity depends on landscape context. J Appl Ecol 43:1121–1127. doi: 10.1111/j.1365-2664.2006.01233.x CrossRefGoogle Scholar
  59. Samways MJ (2007) Insect conservation: a synthetic management approach. Annu Rev Entomol 52:465–487. doi: 10.1146/annurev.ento.52.110405.091317 PubMedCrossRefGoogle Scholar
  60. Samways MJ, Bazelet CS, Pryke JS (2010) Provision of ecosystem services by large scale corridors and ecological networks. Biodivers Conserv 19:2949–2962. doi: 10.1007/s10531-009-9715-2 CrossRefGoogle Scholar
  61. Shreeve TG, Dennis RLH (2011) Landscape scale conservation: resources, behaviour, the matrix and opportunities. J Insect Conserv 15:179–188. doi: 10.1007/s10841-010-9336-9 CrossRefGoogle Scholar
  62. Simpson EH (1949) Measurement of diversity. Nature 163–688Google Scholar
  63. Slancarova J, Bednarova B, Benes J, Konvicka M (2012) How life history affects threat status: requirements of two Onobrychis-feeding lycaenid butterflies, Polyommatus damon and Polyommatus thersites, in the Czech Republic. Biologia 67:1175–1185. doi: 10.2478/s11756-012-0109-7 CrossRefGoogle Scholar
  64. Soderstrom B, Svensson B, Vessby K, Glimskar A (2001) Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers Conserv 10:1839–1863. doi: 10.1023/A:1013153427422 CrossRefGoogle Scholar
  65. Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456. doi: 10.1111/j.1461-0248.2000.00175.x CrossRefGoogle Scholar
  66. Steffan-Dewenter I, Tscharntke T (2002) Insect communities and biotic interactions on fragmented calcareous grasslands—a mini review. Biol Conserv 104:275–284. doi: 10.1016/s0006-3207(01)00192-6 CrossRefGoogle Scholar
  67. Steffan-Dewenter I, Munzenberg U, Burger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432. doi:10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2CrossRefGoogle Scholar
  68. Stoate C, Baldi A, Beja P, Boatman ND, Herzon I, van Doorn A, de Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manage 91:22–46. doi: 10.1016/j.jenvman.2009.07.005 PubMedCrossRefGoogle Scholar
  69. Storch D, Konvicka M, Benes J, Martinkova J, Gaston KJ (2003) Distribution patterns in butterflies and birds of the Czech Republic: separating effects of habitat and geographical position. J Biogeogr 30:1195–1205. doi: 10.1046/j.1365-2699.2003.00917.x CrossRefGoogle Scholar
  70. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org. Accessed 13 January 2012
  71. Ter Braak CJF, Smilauer P (2002) CANOCO 4.56 reference manual and canodraw for windows user’s guide. Biometris—Plant Research International. Wageningen. The NetherlandsGoogle Scholar
  72. Thomas CD (2000) Dispersal and extinction in fragmented landscapes. P R Soc B 267:139–145. doi: 10.1098/rspb.2000.0978 CrossRefGoogle Scholar
  73. Thomas CD, Thomas JA, Warren MS (1992) Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92:563–567. doi: 10.1007/BF00317850 CrossRefGoogle Scholar
  74. Triantis KA, Mylonas M, Lika K, Vardinoyannis K (2003) A model for the species-area-habitat relationship. J Biogeogr 30:19–27. doi: 10.1046/j.1365-2699.2003.00805.x CrossRefGoogle Scholar
  75. Tryjanowski P, Hartel T, Baldi A, Szymanski P, Tobolka M, Herzon I, Golawski A, Konvicka M, Hromada M, Jerzak L, Kujawa K, Lenda M, Orlowski G, Panek M, Skorka P, Sparks TH, Tworek S, Wuczynski A, Zmihorski M (2011) Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe. Acta Ornithol 46:1–12. doi: 10.3161/000164511x589857 CrossRefGoogle Scholar
  76. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363. doi:10.1890/1051-0761(2002)012[0354:COSHFT]2.0.CO;2Google Scholar
  77. Van Swaay CAM (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conserv 104:315–318. doi: 10.1016/s0006-3207(01)00196-3 CrossRefGoogle Scholar
  78. Van Swaay CAM, Collins S, Maes D, Lopez Munguira M, Sasic M, Settele J, Verovnik R, Verstrael R, Warren M, Wiemers M, Wynhof I (2010) European red list of butterflies. Publications Office of the European Union, LuxembourgGoogle Scholar
  79. Walker MP, Dover JW, Sparks TH, Hinsley SA (2006) Hedges and green lanes: vegetation composition and structure. Biodivers Conserv 15:2595–2610. doi: 10.1007/s10531-005-4879-x CrossRefGoogle Scholar
  80. Weibull AC, Ostman O (2003) Species composition in agroecosystems: the effect of landscape, habitat, and farm management. Basic Appl Ecol 4:349–361CrossRefGoogle Scholar
  81. Weibull AC, Bengtsson J, Nohlgren E (2000) Diversity of butterflies in the agricultural landscape: the role of farming system and landscape heterogeneity. Ecography 23:743–750. doi: 10.1111/j.1600-0587.2000.tb00317.x CrossRefGoogle Scholar
  82. Wenzel M, Schmitt T, Weitzel M, Seitz A (2006) The severe decline of butterflies on western German calcareous grasslands during the last 30 years: a conservation problem. Biol Conserv 128:542–552. doi: 10.1016/j.biocon.2005.10.022 CrossRefGoogle Scholar
  83. Wettstein W, Schmid B (1999) Conservation of arthropod diversity in montane wetlands: effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers. J Appl Ecol 36:363–373. doi: 10.1046/j.1365-2664.1999.00404.x CrossRefGoogle Scholar
  84. Wilson RJ, Davies ZG, Thomas CD (2010) Linking habitat use to range expansion rates in fragmented landscapes: a metapopulation approach. Ecography 33:73–82. doi: 10.1111/j.1600-0587.2009.06038.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jana Slancarova
    • 1
    • 2
    Email author
  • Jiri Benes
    • 2
  • Michal Kristynek
    • 3
  • Pavel Kepka
    • 1
  • Martin Konvicka
    • 1
    • 2
  1. 1.Department of ZoologyUniversity of South BohemiaCeske BudejoviceCzech Republic
  2. 2.Biology Centre, ASCR, v. v. i.Institute of EntomologyCeske BudejoviceCzech Republic
  3. 3.Vrbi 248ZamberkCzech Republic

Personalised recommendations