Advertisement

Journal of Insect Conservation

, Volume 17, Issue 6, pp 1197–1208 | Cite as

Knowing the way home: strong philopatry of a highly mobile insect species, Brenthis ino

  • Jessica WeyerEmail author
  • Thomas Schmitt
ORIGINAL PAPER

Abstract

Mobility is crucial for the maintenance of viable metapopulations, but quantitative data to evaluate risks due to insufficient individual mobility of focal insect species are mostly lacking. We selected the butterfly Brenthis ino, a species typically confined to wet fallow grasslands in Central Europe and performed a mark–release–recapture study in a 3.2 ha study area with one big and one small patch of suitable habitat from 22 June to 23 July 2010. The position of each butterfly capture was measured with a GPS and transferred into a GIS. In total, we marked 984 individuals in 1,545 capture events and estimated that the cumulative population size was 2,400 individuals. The initial increase of adult males proceeded much faster than for females, similar to the protandrous population build-up known from other butterflies. Moved distances for both sexes usually did not exceed 80 m, and about 40 % of all individuals used less than 2 % of the available suitable habitat. All individuals switching to the other patch returned later to their patch of origin, confirming that B. ino is highly philopatric. We conclude that low effective mobility in B. ino produces much smaller home ranges than suggested by merely observing flight activities in the field, and that low tendencies towards long-distance movements significantly hamper the maintenance of metapopulations when patch density decreases due to landscape fragmentation.

Keywords

Butterflies Animal movement Habitat use Philopatry Mark–release–recapture 

Notes

Acknowledgments

We acknowledge the “Forschungsinitiative Rheinland-Pfalz” for financing the employment of Jessica Weyer and the DFG graduate school “Verbesserung von Normsetzung und Normanwendung im integrierten Umweltschutz durch rechts- und naturwissenschaftliche Kooperation” (No. 1319) Trier University for scientific support. We are grateful to Dr. Ortwin Elle for advice and support in the GIS analyses.

Supplementary material

10841_2013_9601_MOESM1_ESM.doc (48 kb)
Supplementary material 1 (DOC 48 kb)

References

  1. Baguette M (2003) Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 26:153–160CrossRefGoogle Scholar
  2. Baguette M, van Dyck H (2007) landscape connectivity and animal behaviour: functional grain as key determinant for dispersal. Landscape Ecol 22:1117–1129CrossRefGoogle Scholar
  3. Baguette M, Petit S, Quéva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. J Appl Ecol 37:100–108CrossRefGoogle Scholar
  4. Baker RR (1968) Sun orientation during migration in some British butterflies. Proc R Entomol Soc Lond A 43:89–95Google Scholar
  5. Baker RR (1969) The evolution of the migratory habit in butterflies. J Anim Ecol 38:703–746CrossRefGoogle Scholar
  6. Baker RR (1983) Insect territoriality. Ann Rev Entomol 28:65–89CrossRefGoogle Scholar
  7. Baker RR (1984) The dilemma: when and how to go or stay. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies, vol 11. Academic Press, London, pp 279–296Google Scholar
  8. Barton BJ, Bach CE (2005) Habitat Use by the federally endangered Mitchell’s Satyr Butterfly (Neonympha mitchellii mitchellii) in a Michigan Prairie Fen. Am Midl Nat 153:41–51CrossRefGoogle Scholar
  9. Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86:1988–1995CrossRefGoogle Scholar
  10. Bennet AF (1999) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN Publications, CambridgeGoogle Scholar
  11. Bitzer RJ, Shaw KC (1995) Territorial behaviour of the red admiral, Vanessa atalanta (Lepidoptera: Nymphalidae). I. The role of climatic factors and early interaction frequency on territorial start time. J Insect Behav 8:47–66CrossRefGoogle Scholar
  12. Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133CrossRefGoogle Scholar
  13. Burgman MA, Fox JC (2003) Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim Conserv 6:19–28CrossRefGoogle Scholar
  14. Caro T (1999) The behaviour-conservation interface. Trends Ecol Evol 14:490Google Scholar
  15. Conradt L, Bodsworth EJ, Roper TJ, Thomas CD (2000) Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models. Proc R Entomol Soc Lond B 267:1505–1510CrossRefGoogle Scholar
  16. Conradt L, Roper TJ, Thomas CD (2001) Dispersal behaviour of individuals in metapopulations of two British butterflies. Oikos 95:416–424CrossRefGoogle Scholar
  17. Cooch E, White GC (2007) Program MARK. A gentle introduction, 6th edn. http://www.phidort.org/software/mark/docs/book. Accessed on 2 Sept 2010
  18. Cooper CB, Walters JR (2002) Experimental evidence of disrupted dispersal causing decline of an Australian passerine in fragmented habitat. Conserv Biol 16:471–478CrossRefGoogle Scholar
  19. Cozzi G, Müller CB, Krauss J (2008) How do local habitat management and landscape structure at different spatial scales affect fritillary butterfly distribution in fragmented wetlands? Landscape Ecol 23:269–283CrossRefGoogle Scholar
  20. Dover JW (1991) The Conservation of insects on arable farmland. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, London, pp 294–318Google Scholar
  21. Dover JW, Rowlingson B (2005) The western jewel butterfly (Hypochrysops halyaetus): factors affecting adult butterfly distribution within native Banksia bushland in an urban setting. Biol Conserv 122:599–609CrossRefGoogle Scholar
  22. Ebert G, Rennwald E (eds) (1991) Die Schmetterlinge Baden-Württembergs Band 1 Tagfalter 1, Ulmer, pp: 445ff–451, 552 ppGoogle Scholar
  23. ESRI (1996) ArcView GIS 3.2 reference manual for window by ESRI. Environment Systems and Research Institute, New York Street, Redlands CAGoogle Scholar
  24. Etheredge JA, Perez SM, Taylor OR, Jander R (1999) Monarch butterflies (Danaus plexippus L.) use a magnetic compass for navigation. PNAS 96:13845–13846PubMedCrossRefGoogle Scholar
  25. Fischer K, Fiedler K (2001) Resource-based territoriality in the butterfly Lycaena hippothoe and environmentally induced behavioural shifts. Anim Behav 61:723–732CrossRefGoogle Scholar
  26. Fric Z, Konvicka M (2007) Dispersal kernels of butterflies: power-law functions are invariant to marking frequency. Basic Appl Ecol 8:377–386CrossRefGoogle Scholar
  27. Fric Z, Hula V, Klimova M, Zimmermann K, Konvicka M (2009) Dispersal of four fritillary butterflies within identical landscape. Ecol Res 25:543–552CrossRefGoogle Scholar
  28. Gibbs JP (2000) Wetland loss and biodiversity conservation. Conserv Biol 14:314–317CrossRefGoogle Scholar
  29. Haddad NM (1999) Corridor use predicted from behaviour at habitat boundaries. Am Nat 153:215–227CrossRefGoogle Scholar
  30. Haddad NM, Bowne DR, Cunninghamm A, Danielson BJ, Levey DJ, Sargent S, Spira T (2003) Corridor use by diverse taxa. Ecology 84:609–615CrossRefGoogle Scholar
  31. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  32. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  33. Hanski I, Ovaskainen O (2003) Metapopulation theory for fragmented landscapes. Theor Popul Biol 64:119–127PubMedCrossRefGoogle Scholar
  34. Hanski I, Stevnes PC, Ihalempiä P, Selonen V (2000) Home-range size, movements, and nest-site use in the Siberian flying squirrel, Pteromys volans. J Mammal 81:798–809CrossRefGoogle Scholar
  35. Hartig EK, Grozev O, Rosenzweig C (1997) Climate change, agricultural and wetlands in Eastern Europe: vulnerability, adaptation and policy. Clim Change 36:107–121CrossRefGoogle Scholar
  36. Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735CrossRefGoogle Scholar
  37. Hölldobler B (1976) Recruitment behaviour, home range orientation and territoriality in harvester ants Pogonomyrmex. Behav Ecol Sociobiol 1:3–44CrossRefGoogle Scholar
  38. Hovestadt T, Nowicki P (2008) Investigating movement within irregularly shaped patches: analysis of mark–release–recapture data using randomisation procedures. Israel J Ecol Evol 54:137–154CrossRefGoogle Scholar
  39. Hovestadt T, Nowicki P, Binzenhöfer B, Settele J (2011) Do all inter-patch movements represent dispersal? A mixed kernel study of butterfly mobility in fragmented landscapes. J Anim Ecol 80:1070–1077PubMedCrossRefGoogle Scholar
  40. Junker M, Schmitt T (2010) Demography, dispersal and movement pattern of Euphydryas aurina (Lepidoptera: Nymphalidae) at the Iberian Peninsula: an alarming example in an increasingly fragmented landscape? Insect Conserv 14:237–246CrossRefGoogle Scholar
  41. Junker M, Wagner S, Gros P, Schmitt T (2010) Changing demography and dispersal behaviour: ecological adaptation in an alpine butterfly. Oecologia 164:971–980PubMedCrossRefGoogle Scholar
  42. Kudrna O, Harpke A, Lux K, Pennersdorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz, HalleGoogle Scholar
  43. Kuras T, Benes J, Fric Z, Konvicka M (2003) Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica. Popul Ecol 45:115–123CrossRefGoogle Scholar
  44. Lidicker WZ Jr (1975) The role of dispersal in the demography of small mammals. In: Golley FB, Perturusewicz K, Ryszkowski L (eds) Small mammals: their productivity and population dynamics. Cambridge University Press, London, pp 103–108Google Scholar
  45. Lurtz PWW, Garson PJ, Wauters LA (1997) Effects of temporal and spatial variation in habitat quality on red squirrel dispersal behaviour. Anim Behav 54:427–435CrossRefGoogle Scholar
  46. Mallet J (1986) Dispersal and gene flow in a butterfly with home range behaviour: Heliconius erato (Lepidoptera: Nymphalidae). Oecologia 68:210–217CrossRefGoogle Scholar
  47. Mittelstaedt H (1962) Control systems of orientation in insects. A Rev Entomol 7:177–198CrossRefGoogle Scholar
  48. Moore D, van Nest BN, Seier E (2011) Diminishing returns: the influence of experience and environment on time-memory extinction in honeybee foragers. J Comp Physiol A. doi: 10.1007/s00359-011-0624-y Google Scholar
  49. Munguia ML, Martin J, Gracia-Barros E, Viejo JL (1997) Use of space and resources in a Mediterranean population of the butterfly Euphydryas aurinia. Acta Oecol 17:597–612CrossRefGoogle Scholar
  50. Öckinger E, Hammerstedt O, Nilsson SG, Smith HG (2006) The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels. Biol Conserv 128:564–573CrossRefGoogle Scholar
  51. Parmesan C (1996) Climate and specie’s range. Nature 382:765–766CrossRefGoogle Scholar
  52. Poethke HJ, Hovestadt T (2002) Evolution of density and patch size dependent dispersal rates. Proc R Soc Lond B 269:637–645CrossRefGoogle Scholar
  53. R development core team (2009) R: a language and environment for statistical computing. Vienna, Austria. http://www.R-project.org. Accessed on 13 Nov 2010
  54. Reed JM (1999) The role of behaviour in recent avian extinctions and endangerments. Conserv Biol 13:232–241CrossRefGoogle Scholar
  55. Root RB, Kareiva PM (1984) The search for resources by cabbage butterflies (Pieris rapae): ecological consequences and adaptive significance of Markovian movements in a patchy environment. Ecology 65:147–165CrossRefGoogle Scholar
  56. Schneider C, Dover J, Fry GLA (2003) Movement of two grassland butterflies in the same habitat network: the role of adult resources and size of the study area. Ecol Entomol 28:219–227CrossRefGoogle Scholar
  57. Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restricts dispersal and generates emigration-patch area relationships in fragmented landscapes. J Anim Ecol 72:533–545CrossRefGoogle Scholar
  58. Settele J, Feldmann R, Reinhardt R (1999a) Die Tagfalter Deutschlands—Ein Handbuch für Freilandökologen, Umweltplaner und Naturschützer. Ulmer, Stuttgart, p 452Google Scholar
  59. Settele J, Feldmann R, Henle K, Kockelke K, Poethke HJ (1999b) Methoden der quantitativen Erfassung von Tagfaltern. In: Settele J, Feldmann R, Reinhardt R (eds) Die Tagfalter Deutschlands. Ulmer, Stuttgart, pp 144–186, p 452Google Scholar
  60. Shier DM (2006) Effect of family support on the success of translocated black-tailed prairie dogs. Conserv Biol 20:1780–1790PubMedCrossRefGoogle Scholar
  61. Shreeve TG, Dennis RLH (2011) Landscape scale conservation: resources, behaviour, the matrix and opportunities. J Insect Conserv 15:179–188CrossRefGoogle Scholar
  62. Stevens VM, Turlure C, Baguette M (2010) A meta-analysis of dispersal in butterflies. Biol Rev 85:625–642PubMedGoogle Scholar
  63. Strier KB (1997) Behavioural ecology and conservation biology of primates and other animals. Adv Stud Behav 26:101–158Google Scholar
  64. Sutherland WJ (1998) The importance of behavioural studies in conservation biology. Anim Behav 56:801–809PubMedCrossRefGoogle Scholar
  65. Sutherland WJ, Dolman PM (1994) Combining behaviour and population dynamics with applications for predicting consequences of habitat loss. Proc R Soc Lond B 255:955–963CrossRefGoogle Scholar
  66. Tolman T, Levington R (1998) Die Tagfalter Europas und Nordwestafrikas. Kosmos Verlags-GmbH & Co-Stuttgart, 319 ppGoogle Scholar
  67. Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181CrossRefGoogle Scholar
  68. Turner JRG (1971) Experiments on the demography of tropical butterflies. II. Longevity and home-range behaviour in Heliconius. Biotropica 3:21–31CrossRefGoogle Scholar
  69. van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Appl Ecol 6:535–545CrossRefGoogle Scholar
  70. Van Swaay C, Cuttelod A, Collins S, Maes D, Lopez M, Munguira M, Šašić M, Settele J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhof I (2010) European red list of butterflies. Publications Office of the European Union, LuxembourgGoogle Scholar
  71. Wahlberg N, Klemetti T, Hanski I (2002) Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly. Ecography 25:224–232CrossRefGoogle Scholar
  72. Wolff JO, Lidicker WZ Jr (1980) Population ecology of the taiga vole, Microtus xanthognathus, in interior Alaska. Can Zool 58:1800–1812CrossRefGoogle Scholar
  73. Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168CrossRefGoogle Scholar
  74. Zimmermann K, Fric Z, Filipová L, Konvicka M (2005) Adult demography, dispersal and behaviour of Brenthis ino (Lepidoptera: Nymphalidae): how to be a successful wetland butterfly. Eur J Entomol 102:699–706Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of BiogeographyTrier UniversityTrierGermany

Personalised recommendations