Journal of Insect Conservation

, Volume 17, Issue 6, pp 1081–1091 | Cite as

Effects of mire type, land use and climate on a strongly declining wetland butterfly

  • Sarah Weking
  • Gabriel Hermann
  • Thomas Fartmann


Mires are characterised by highly specialised and threatened wildlife. One of these mire specialists that has severely declined is the Large Heath (Coenonympha tullia). However, detailed studies concerning the reasons for the dramatic population loss in central Europe are missing so far. In this paper: (1) we analyse the habitat preferences of adult C. tullia and oviposition site selection with respect to mire type and land use in one of the last German strongholds, and (2) we attempt to disentangle the impacts of land use and climate change on the decline of C. tullia on a national scale across Germany. Abundance of adult C. tullia was clearly affected by mire type and land use. It was highest on managed calcareous fens and lowest on unmanaged transition and raised bogs. The oviposition pattern of C. tullia females was best explained by (1) quantity of potential host plants (Eriophorum latifolium), (2) vegetation structure, and (3) microclimate. In Germany, C. tullia populations have become extinct in lowlands with a mild and relatively dry climate while most colonies in wet and cold mountain areas have survived. However, there is evidence that habitat loss and habitat deterioration, rather than climate change, are the drivers of the range retraction. To create low-growing vegetation rich in E. latifolium, traditional mowing late in the year and light grazing seem to be suitable management tools. In addition, conservation management should aim to maintain high water levels or restore them, especially to counteract effects of climate change in the future.


Bog Calcareous fen Conservation management Global change Habitat quality Vegetation structure 



We are grateful to Wolfgang Kraus (Landratsamt Garmisch-Partenkirchen) for helpful information concerning the study area. Two anonymous referees made valuable comments on an earlier version of the manuscript.


  1. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure—the key for successful management of prealpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185CrossRefGoogle Scholar
  2. Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The Millenium Atlas of butterflies in Britain and Ireland. Oxford University Press, OxfordGoogle Scholar
  3. Bates D, Maechler M, Dai B (2008) lme4: linear mixed-effects models using S4 classes. R Package Version 0.999375-28.
  4. Bayerisches Landesamt für Umweltschutz (ed) (2001) Artenschutzkartierung Bayern. Arbeitsatlas Tagfalter. AugsburgGoogle Scholar
  5. Beneš J, Konvička M, Dvořák J, Fric Z, Haveld Z, Pavlíčko A, Vrabec V, Weidenhoffer Z (eds) (2002) Motýli České republiky: Rozšířeni a ochrana I, II (Butterflies of Czech Republic: distribution and conservation I, II). SOM, PragueGoogle Scholar
  6. Beyer L, Schultz CB (2010) Oviposition selection by rare grass skipper Polites mardon in montane habitats: advancing ecological understanding for developing conservation strategies. Biol Conserv 143:862–872. doi: 10.1016/j.biocon.2009.12.031 CrossRefGoogle Scholar
  7. Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Schuyt and Co, HaarlemGoogle Scholar
  8. Bos F, Bosveld M, Groenendijk G, Van Swaay C, Wynhoff I (2006) De dagvlinders van Nederland, verspreiding en bescherming (Lepidoptera: Hesperioidea, Papilionoidea), Nederlandse Fauna 7. Nationaal Natuurhistorisch Museum Naturalis, KNNV Uitgeverij and European Invertebrate Survey, The Netherlands, LeidenGoogle Scholar
  9. Bourn NAD, Warren MS (1997) Species action plan: large heath (Coenonympha tullia). Butterfly Conservation, DorsetGoogle Scholar
  10. Bräu M (1995) Tierwelt. In: Quinger B, Schwab U, Ringler A, Bräu M, Strohwasser R, Weber J (eds) Lebensraumtyp Streuwiesen. Landschaftspflegekonzept Bayern, Band II.9. Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen (StMLU) and Bayerische Akademie für Naturschutz und Landschaftspflege (ANL), München, pp 93–133Google Scholar
  11. Crawley MJ (2002) Statistical computing: an introduction to data analysis using S-Plus. Wiley, ChichesterGoogle Scholar
  12. Dennis RLH (1993) Butterflies and climate change. Manchester University Press, ManchesterGoogle Scholar
  13. Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Müller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176. doi: 10.1023/A:1018455714879 CrossRefGoogle Scholar
  14. Dennis RLH, Eales HT (1999) Probability of site occupancy in the large heath butterfly Coenonympha tullia determined from geographical and ecological data. Biol Conserv 87:295–301. doi: 10.1016/S0006-3207(98)00080-9 CrossRefGoogle Scholar
  15. Dierßen K, Dierßen B (2008) Moore. In: Pott R (ed) Ökosysteme Mitteleuropas aus geobotanischer Sicht. Eugen Ulmer, StuttgartGoogle Scholar
  16. Ebenhard T (1995) Wetland butterflies in a fragmented landscape: the survival of small populations. Ent Tidskr 116:73–82Google Scholar
  17. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 2, Tagfalter 2. Eugen Ulmer, StuttgartGoogle Scholar
  18. EC (European Commission) (2007) Interpretation manual of European Union habitats—EUR27. European Commission, DG Environment, BrusselsGoogle Scholar
  19. Eggelsmann R (1990) Mikroklima der Moore. In: Göttlich K (ed) Moor- und Torfkunde. E Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 374–384Google Scholar
  20. Ehrlich PR, Hanski I (eds) (2004) On the wings of checkerspots: a model system for population biology. Oxford University Press, New YorkGoogle Scholar
  21. Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12:677–688. doi: 10.1007/s10841-007-9110-9 CrossRefGoogle Scholar
  22. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen, 6th edn. Eugen Ulmer, StuttgartGoogle Scholar
  23. Engel DE (1987) Beitrag zur Faunistik der hessischen Tagfalter (Insecta: Papilionoidea). In: Entomologischer Verein Apollo e.V (eds) Nachrichten des entomologischen Vereins Apollo. Frankfurt am MainGoogle Scholar
  24. Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fennici 43(4):335–347Google Scholar
  25. Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa—von den Anfängen bis heute. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abhandlungen aus dem Westfälischen Museum für Naturkunde 68(3/4):11–57Google Scholar
  26. Fox R, Asher J, Brereton T, Roy D, Warren MS (2006) The state of butterflies in Britain and Ireland. Pisces Publ. for Butterfly Conservation, NewburyGoogle Scholar
  27. Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Change Biol 12:1545–1553. doi: 10.1111/j.1365-2486.2006.01180.x CrossRefGoogle Scholar
  28. García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Shreeve TG, Konvička M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 39–42Google Scholar
  29. Gelbrecht J, Kallies A, Gerstberger M, Dommain R, Göritz U, Hoppe H, Richert A, Rosenbauer F, Schneider A, Sobczyk T, Weidlich M (2003) Die aktuelle Verbreitung der Schmetterlinge der nährstoffarmen und sauren Moore des nordostdeutschen Tieflandes (Lepidoptera). Märkische Ent Nachr 5(1):1–68Google Scholar
  30. Harkort W (1975) Schmetterlinge in Westfalen (ohne Ostwestfalen). Fundortkarten und Fundortlisten; Stand Ende 1974. Dortmunder Beiträge zur Landeskunde. Naturwissenschaftliche Mitteilungen 9:33–102Google Scholar
  31. Hill JK, Thomas CD, Huntley B (2003) Modeling present and potential future ranges of European butterflies using climate response surfaces. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies. Ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 149–167Google Scholar
  32. IPCC (2007) Climate change 2007: the physical science basis. Cambridge Univ. Press, CambridgeGoogle Scholar
  33. Joosten H, Couwenberg J (2001) Bilanzen zum Moorverlust. Das Beispiel Europa. In: Succow M, Joosten H (eds) Landschaftsökologische Moorkunde. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 406–408Google Scholar
  34. Joy J, Pullin AS (1997) The effects of flooding on the survival and behaviour of overwintering large heath butterfly Coenonympha tullia larvae. Biol Conserv 82:61–66. doi: 10.1016/S0006-3207(97)00006-2 CrossRefGoogle Scholar
  35. Kaule G (1974) Die Übergangs- und Hochmoore Süddeutschlands und der Vogesen. Dissertationes Botanicae 27Google Scholar
  36. Kolligs D (2003) Schmetterlinge Schleswig-Holsteins. Atlas der Tagfalter, Dickkopffalter und Widderchen. Wachholz Verlag, NeumünsterGoogle Scholar
  37. Krämer B, Poniatowski D, Fartmann T (2012) Effects of landscape and habitat quality on butterfly communities in pre-alpine calcareous grasslands. Biol Conserv 152:253–261. doi: 10.1016/j.biocon.2012.03.038 CrossRefGoogle Scholar
  38. Kudrna O (2002) The distribution atlas of European butterflies. Oedippus 20:1–342Google Scholar
  39. Marthaler S (2010) Ansprüche des Großen Wiesenvögelchens (Coenonympha tullia O.F. Müller, 1764) an Standort und Vegetation im Boniswilerried Kt. Aargau. Bachelorarbeit, Zürcher Hochschule für Angewandte Wissenschaften ZHAW, Wädenswil (unpubl.)Google Scholar
  40. Meineke JU (1985) Die Situation moorgebundener Groß-Schmetterlingsarten in Nordrhein-Westfalen. Telma 15:75–100Google Scholar
  41. Melling T (1984) Discovery of the larvae of the Large Heath (Coenonympha tullia) in the wild. Entomol Record J Variation 96:231–232Google Scholar
  42. Melling T (1989) Coenonympha tullia (Müller). The large heath. In: Emmet AM, Heath J (eds) The moths and butterflies of Great Britain and Ireland, 7(1), Hesperiidae–Nymphalidae. Harley Books, Colchester, pp 280–282Google Scholar
  43. Möllenbeck V, Hermann G, Fartmann T (2009) Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J Insect Conserv 13:77–87. doi: 10.1007/s10841-007-9128-z CrossRefGoogle Scholar
  44. Munguira M, García-Barros E, Cano JM (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve TG, Konvicka M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54Google Scholar
  45. Niedersächsisches Landesamt für Ökologie (ed) (2001) Verbreitung TagfalterGoogle Scholar
  46. Oberdorfer E (ed) (1998) Süddeutsche Pflanzengesellschaften. Teil I: Fels- und Mauer-gesellschaften, alpine Fluren, Wasser-, Verlandungs- und Moorgesellschaften, 4th edn. Gustav Fischer Verlag, JenaGoogle Scholar
  47. Oberdorfer E (2001) Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete, 8th edn. Ulmer, StuttgartGoogle Scholar
  48. Parish F, Sirin A, Charman D, Joosten H, Minaeva T, Silvius M (eds) (2008) Assessment on peatlands, biodiversity and climate change. Global Environment Centre, Kuala Lumpur and Wetlands International, WageningenGoogle Scholar
  49. Pollard E (1977) Method for assessing changes in abundance of butterflies. Biol Conserv 12:115–134. doi: 10.1016/0006-3207(77)90065-9 CrossRefGoogle Scholar
  50. Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman and Hall, LondonGoogle Scholar
  51. Poniatowski D, Fartmann T (2008) The classification of insect communities: lessons from orthopteran assemblages of semi-dry calcareous grasslands in central Germany. Eur J Entomol 105:659–671Google Scholar
  52. Poniatowski D, Fartmann T (2011) Weather-driven changes in population density determine wing dimorphism in a bush-cricket species. Agric Ecosyst Environ 145:5–9CrossRefGoogle Scholar
  53. Quinger B, Schwab U, Ringler A, Bräu M, Strohwasser R, Weber J (1995) Lebensraumtyp Streuwiesen. Landschaftspflegekonzept Bayern, Band II.9. Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen (StMLU) and Bayerische Akademie für Naturschutz und Landschaftspflege (ANL), MünchenGoogle Scholar
  54. Reinhardt R, Bolz R (2011) Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands. Natursch Biol Vielfalt 70(3):167–194Google Scholar
  55. Rennwald E (2007) Großes Wiesenvögelchen—Coenonympha tullia (O.F. Müller, 1764). In: Schulte T, Eller O, Niehuis M, Rennwald E (eds) Die Tagfalter der Pfalz. Band 2. Fauna und Flora in Rheinland-Pfalz, Beiheft 37:620–625Google Scholar
  56. Retzlaff H (1973) Die Schmetterlinge von Ostwestfalen-Lippe und einigen angrenzenden Gebieten Hessens und Niedersachsens (Weserbergland, südöstliches Westfälisches Tiefland und östliche Westfälische Bucht). I Teil Ber Naturwiss Ver Bielef 21:129–248Google Scholar
  57. Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford Univ. Press, OxfordCrossRefGoogle Scholar
  58. SBN (ed) (1987) Tagfalter und ihre Lebensräume—Arten, Gefährdung, Schutz. Fotorotar AG, Egg/ZHGoogle Scholar
  59. Settele J, Dover J, Dolek M, Konvicka M (2009) Butterflies of European ecosystems: impact of land use and options for conservation management. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. CUP, Cambridge, pp 353–370Google Scholar
  60. Stamm K (1981) Prodromus der Lepidopteren-Fauna der Rheinlande und Westfalens. Selbstverlag, SolingenGoogle Scholar
  61. Stoutjesdijk P, Barkman JJ (1992) Microclimate vegetation and fauna. Opulus Press, UppsalaGoogle Scholar
  62. Streitberger M, Hermann G, Kraus W, Fartmann T (2012) Modern forest management and the decline of the Woodland Brown (Lopinga achine) in Central Europe. For Ecol Manage 269:239–248. doi: 10.1016/j.foreco.2011.12.028 CrossRefGoogle Scholar
  63. Succow M, Jeschke L (1990) Moore in der Landschaft. Urania-Verlag, LeipzigGoogle Scholar
  64. Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans R Soc Lond Ser B Biol Sci 360:339–357CrossRefGoogle Scholar
  65. Thomas JA, Clarke RT (2004) Extinction rates and butterflies. Science 305:1563–1564CrossRefGoogle Scholar
  66. Thomas JA, Lewington R (2010) The butterflies of Britain and Ireland. British Wildlife Publishing Ltd, GillinghamGoogle Scholar
  67. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond Ser B 268:1791–1796CrossRefGoogle Scholar
  68. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881. doi: 10.1126/science.1095046 PubMedCrossRefGoogle Scholar
  69. Tonne F (1954) Besser Bauen mit Besonnungs- und Tageslicht-Planung. Hofmann, SchorndorfGoogle Scholar
  70. Trautner J, Hermann G, Rietze J (2004) Weidewirkung auf Tierarten und -zönosen. In: Lederbogen D, Rosenthal G, Scholle D, Trautner J, Zimmermann B, Kaule G (eds) Allmendweiden in Südbayern: Naturschutz durch landwirtschaftliche Nutzung. Bundesamt für Naturschutz. Angewandte Landschaftsökologie 62:275–285Google Scholar
  71. Turlure C, Choutt J, Baguette M, Van Dyck H (2010) Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Glob Change Biol 16:1883–1893. doi: 10.1111/j.1365-2486.2009.02133.x CrossRefGoogle Scholar
  72. Van Swaay CAM, Warren MS (1999) Red Data book of European butterflies (Rhopalocera). Nature and Environment, No 99, Council of Europe Publishing, StrasbourgGoogle Scholar
  73. Van Swaay CAM, Warren MS (eds) (2003) Prime butterfly areas in Europe: priority sites for conservation. National Reference Centre for Agriculture, Nature and Fisheries, Ministry of Agriculture, Nature Management and Fisheries, WageningenGoogle Scholar
  74. Van Swaay CAM, Warren MS, Lois G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209. doi: 10.1007/s10841-006-6293-4 CrossRefGoogle Scholar
  75. Van Swaay CAM, Cuttelod A, Collins S, Maes D, Lopez Munguira M, Šašić M, Settele J, Verovnik R, Verstrael T, Warren MS, Wiemers M, Wynhof I (2010) European red list of butterflies. Publications Office of the European Union, LuxembourgGoogle Scholar
  76. Wagner A (2000) Minerotrophe Bergkiefernmoore im süddeutschen Alpenvorland. Die Carex lasiocarpa-Pinus rotundata-Gesellschaft. Diss. Lehrstuhl für Vegetationsökologie TUMGoogle Scholar
  77. Wainwright D (2007) The status of the Large Heath butterfly on the North York Moors. In: Hammont M (ed) Moorland research review 2000–2005. North York Moors National Park AuthorityGoogle Scholar
  78. WallisDeVries MF (2006) Larval habitat quality and its significance for the conservation of Melitaea cinxia in northwestern Europe. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abhandlungen aus dem Westfälischen Museum für Naturkunde 68:281–294Google Scholar
  79. Watt WB, Boggs CL (2003) Synthesis: butterflies as model systems in ecology and evolution—present and future. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies—ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 603–613Google Scholar
  80. Werno A (2011) Lepidoptera-Atlas 2010. Verbreitungskarten (Lepidoptera) im Saarland und Randgebieten. Accessed 05 Jan 2013
  81. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sarah Weking
    • 1
  • Gabriel Hermann
    • 2
  • Thomas Fartmann
    • 1
    • 3
  1. 1.Department of Community Ecology, Institute of Landscape EcologyUniversity of MünsterMünsterGermany
  2. 2.Arbeitsgruppe für Tierökologie und PlanungFilderstadtGermany
  3. 3.Ecology Group, Department of Biology and ChemistryUniversity of OsnabrückOsnabrückGermany

Personalised recommendations