Journal of Insect Conservation

, Volume 17, Issue 5, pp 975–988 | Cite as

The effect of alpine ski-slopes on epigeic beetles: does even a nature-friendly management make a change?

ORIGINAL PAPER

Abstract

Unique alpine ecosystems are threatened by skiing activities all over the world. We studied the effect of alpine ski-slopes on epigeic beetles by pitfall trapping in the Praděd National Nature Reserve (Czech Republic) where the management of ski-slopes has never caused any disturbance to the vegetation cover. Using a mixed modelling approach, we demonstrate a significant effect of ski-slope management on the epigeic beetle community, including its functional diversity. Beetle species responded to the ski-slope individually. We found a noticeable decline in the abundance of most species in the patches with artificially increased accumulation of snow, i.e. close to the interior edges of the ski-slopes. Above all, the ski-slopes were not preferred by relict species such as Neagolius limbolarius, Minota carpathica and Liotrichus affinis but vagile widespread carabids (Amara lunicollis, Poecilus versicolor) and herbivores associated with nitrophilous plants (Gastrophysa viridula) were more abundant on the ski-slopes. A few stenotypic carnivorous and herbivorous species were found on the ski-slopes. A high abundance of mountain herbivores such as leaf beetle Timarcha metallica reflected an increased occurrence of their host plants and carnivores such as Carabus sylvestris and Pterostichus oblongopunctatus could prefer ski-slopes due to the locally increased food supply. With respect to both uniqueness of alpine communities and to the small extent of alpine treeless zone, we recommend considering very cautiously any potential expansion of ski resorts, even those with reasonable ‘nature-friendly’ practices.

Keywords

Ski-slopes Epigeic beetles Alpine ecosystems Functional diversity Conservation 

Notes

Acknowledgments

We would like to thank P. Mařák for help with data collection; J. Stanovský for problematic species determination and helpful supplement of beetle characteristics. F. Trnka helped us the same way; we are very grateful to J. Starý for giving useful comments on the manuscript. We acknowledge the Ministry of the Environment of the Czech Republic – our investigations would never been established without their permission. We are much obliged to two anonymous referees for their valuable comments and suggestions which enable to improve our study. Last but not least, we thank to Tim Shreeve for the time he spent improving our manuscript. Funding of the research project was provided by the Ministry of the Environment of the Czech Republic (VaV/620/15/03, VaV/SM/6/70/05).

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Scake F (eds) 2nd International symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  2. Banaš M, Zeidler M, Duchoslav M, Hošek J (2010) Growth of alpine lady-fern (Athyrium distentifolium) and plant species composition on a ski piste in Hrubý Jeseník Mts Czech Republic. Ann Bot Fenn 47:280–292CrossRefGoogle Scholar
  3. Barni E, Freppaz M, Siniscalco C (2007) Interactions between vegetation, roots and soil stability in restored high-altitude ski runs in the Alps. Arctic, Antarctic, and Alpine Research 39:25–33CrossRefGoogle Scholar
  4. Bates D, Maechler M, Bolker B (2012) lme4: linear mixed-effects models using S4 classes. R package version 0.999999–0Google Scholar
  5. Baur B, Cremene C, Groza G, Schileyko AA, Baur A, Erhardt A (2007) Intensified grazing affects endemic plant and gastropod diversity in alpine grasslands of the Southern Carpathian mountains (Romania). Biologia 62:438–445CrossRefGoogle Scholar
  6. Beenen R (2005) Flight muscles in Galeruca tanaceti. Chrysomela 45:16–17Google Scholar
  7. Bílá K, Kuras T, Šipoš J, Kindlmann P (2012) Lepidopteran species richness of alpine sites in high sudetes Mts.: effect of area and isolation. J Insect Conserv doi:  10.1007/s10841-012-9504-1
  8. Brandmayr P, Pizzolotto R, Scalerio S (2003) Overview: invertebrate diversity in Europe’s alpine regions. In: Nagy L, Grabherr G, Körner Ch, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies, Springer-Verlag Berlin Heidelberg New York, pp 234–237Google Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New YorkGoogle Scholar
  10. Caprio E, Chamberlain DE, Isaia M, Rolando A (2011) Landscape changes caused by high altitude ski-pistes affect bird species richness and distribution in the alps. Biological Conservation 144:2958–2967CrossRefGoogle Scholar
  11. Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Response of arctic tundra to experimental and observed changes in climate. Ecology 76:669–711CrossRefGoogle Scholar
  12. Čížek P, Doguet S (2008) Key for the identification of the leaf beetles (Coleoptera: Chrysomelidae: Alticinae) of the Czech and Slovak Republics. Městské muzeum, Nové Město nad MetujíGoogle Scholar
  13. Coldea G, Stoica IA, Puscas M, Ursu T, Oprea A (2009) Alpine-subalpine species richness of the Romanian Carpathians and the current conservation status of rare species. Biodiversity and Conservation 18:1441–1458CrossRefGoogle Scholar
  14. de Jong YSDM (ed) (2012) Fauna Europaea version 2.5. Web Service available online at http://www.faunaeur.org. Accessed 20 Dec 2012
  15. Delgado R, Sánchez-Marañon M, Martín-García JM, Aranda V, Serrano-Bernardo F, Rosúa JL (2007) Impact of ski pistes on soil properties: a case study from a mountainous area in the Mediterranean region. Soil Use and Management 23:269–277CrossRefGoogle Scholar
  16. Demek J, Kříž V (1994) Terénní cvičení z fyzické geografie (na příkladu Jeseníků a okolí). Ostravská univerzita v Ostravě, OstravaGoogle Scholar
  17. Dieckmann L (1980) Beiträge zur Insektenfauna der DDR: coleoptera, Curculionidae (Brachycerinae, Otiorhynchinae, Brachyderinae). Beiträge zur Entomol 30:145–310Google Scholar
  18. Dieckmann L (1986) Beiträge zur Insektenfauna der DDR: coleoptera, Curculionidae (Erirhinae). Beiträge zur Entomol 36:119–181Google Scholar
  19. Foisnerr W, Franz H, Adam H (1982) Terrestrische Protozoen als Bioindikatoren im Boden einer planierten Ski-Piste. Pedobiologia 24:45–56Google Scholar
  20. Gavazov KS (2010) Dynamics of alpine plant liter decompositon in a changing climate. Plant and Soil 337:19–32CrossRefGoogle Scholar
  21. Gillian LH, Wilson KR (2008) Patterns of small mammal density and survival following ski-runs development. Journal of Mammalogy 85:97–104Google Scholar
  22. Gobbi M, Rossaro M, Vater A, De Bernardi F, Delfini M, Brandmayr P (2007) Environmental features influencing Carabid beetle (Coleoptera) assemblages along a recently deglaciated area in the Alpine region. Ecol Entomol 32:628–689CrossRefGoogle Scholar
  23. Gonzáles-Mégias A, Gómez JM (2001) Adult and larval plant range and preferences in Timarcha lugens (Coleoptera: chrysomelidae): strict monophagy on an atypical host. Annals of the Entomological Society of America 94:110–115CrossRefGoogle Scholar
  24. Gonzáles-Mégias A, Gómez JM, Sánchez-Piñero F (2005) Regional dynamics of patchily distributed herbivore along an altitudinal gradient. Ecol Entomol 30:706–713CrossRefGoogle Scholar
  25. Gordon JE, Dvořák I, Johansson CH, Josefsson M, Kociánová M, Thompson DBA (2002) Geo-ecology and managment of sensitive montane landscape. Geograf Ann 84:193–203CrossRefGoogle Scholar
  26. Grabherr G, Nagy L, Thomphson DBA (2003) An outline of Europe’s alpine areas. In: Nagy L, Grabherr G, Körner Ch, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies, Springer-Verlag Berlin Heidelberg New York, pp 3–12CrossRefGoogle Scholar
  27. Greenslade PJM (1964) Pitfall trapping as method for studying populations of Carabidae (Coleoptera). Journal of Animal Ecology 33:301–310CrossRefGoogle Scholar
  28. Hadley GL, Wilson KR (2004a) Patterns of density and survival in small mammals in ski-runs and adjacent forest patches. J Wildl Manag 68:288–298CrossRefGoogle Scholar
  29. Hadley GL, Wilson KR (2004b) Patterns of small mammal density and survival following ski-run development. Journal of Mammalogy 85:97–104CrossRefGoogle Scholar
  30. Haslett JR (1991) Habitat deterioration on ski slopes: hoverfly assemblages (Diptera: Syrphidae) occurring on skied and unskied subalpine meadows in Austria. In: Ravera O (ed) Terrestrial and aquatic ecosystems, perturbation and recovery. Ellis Horwood, Chichester, pp 366–371Google Scholar
  31. Haslett JR (1997) Insect communities and the spatial complexity of mountain habitats. Glob Ecol Biogeogr Lett 6:49–56CrossRefGoogle Scholar
  32. Heal OW, Callaghan TV, Cornelissen JHC, Körner C, Lee SE (eds) Global change in Europe’s cold regions. Ecosyst Res Rept 27: 65–134Google Scholar
  33. Hédl R, Houška J, Banaš M, Zeidler M (2012) Effect of skiing and slope gradient on topsoil prosperities in alpine environment. Pol J Ecol 60:491–501Google Scholar
  34. Hill MO, Gauch HG (1980) Detrended correspondence analysis, an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  35. Holland EA, Braswell BH, Sulzman J, Lamarque JF (2005) Nitrogen deposition onto the United States and western Europe: synthesis of observations and models. Ecological Applications 15:38–58CrossRefGoogle Scholar
  36. Huber Ch, Baumgarten M (2005) Early effect of forest regeneration with selective and small scale clear-cutting on ground beetles (Coleoptera, Carabidae) in a Norway spruce stand in Southern Bavaria (Hőglwald). Biodiversity and Conservation 14:1989–2007CrossRefGoogle Scholar
  37. Hůrka K (1996) Carabidae of the Czech and Slovak Republics – Illustrated key. Kabourek, ZlínGoogle Scholar
  38. Hůrka K, Veselý P, Farkač J (1996) Využití střevlíkovitých (Coleoptera: carabidae) kindikaci kvality prostředí. Klapalekiana 32:15–26Google Scholar
  39. Illich IP, Haslett JR (1994) Response of assemblages of Orthoptera to management and use of ski slopes on upper sub-alpine meadows in the Austrian Alps. Oecologia 97:470–474CrossRefGoogle Scholar
  40. Isselin-Nondedeu F, Bédécarrats A (2007) Influence of alpine plants growing on steep slopes on sediment trapping and transport by runoff. Catena 71:330–339CrossRefGoogle Scholar
  41. Jolivet P (2005) Timarcha Latreille (Coleoptera: Chrysomelidae, Chrysomelinae). In Capinera JL (ed), Encyklopedia of Entomology, pp 2269–2666Google Scholar
  42. Juřena D, Týr V, Bezděk A (2008) Contribution to the faunistic research on Scarabaeoidea (Coleoptera) in the Czech Republic and Slovakia. Klapalekiana 44 (Suppl.):17–176Google Scholar
  43. Kaluz S (2005) Soil and soil mites (Acari) of the ski slope in Nízké Tatry Mts. Ekologia 24:200–213Google Scholar
  44. Kangas K, Tolvanen A, Kälkäjä T, Siikamäki P (2009) Ecological impact of revegetation and management practices of ski slopes in Northern Finland. Environ Manag 44:408–419CrossRefGoogle Scholar
  45. Kessler T, Cierjacks A, Ernst R, Dziock F (2012) Direct and indirect effect of ski run management on alpine Orthoptera. Biodiversity and Conservation 21:281–296CrossRefGoogle Scholar
  46. Khobrakova LT, Sharova IK (2005) Life cycles of ground beetles (Coleoptera, Carabidae) from the mountain taiga and mountain forest-steppe in the eastern Sayan. Biological Bulletin 32:571–575CrossRefGoogle Scholar
  47. Konvicka M, Maradova M, Benes J, Fric Z, Kepka P (2003) Uphill shifts in distribution on butterflies in the Cezch Republic: effects of changing climate detected on a regional scale. Global Ecol Biogeogr 12:403–410CrossRefGoogle Scholar
  48. Körner C (2003) Alpine plant life, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  49. Kubota H, Shimano K (2010) Effect of ski resort management on vegetation. Landsc Ecol Eng 6:61–74CrossRefGoogle Scholar
  50. Kuhn M (2001) The nutriet cycle through snow and ice, a review. Aquatic Sciences 63:150–167CrossRefGoogle Scholar
  51. Kuras T, Benes J, Fric Z, Konvicka M (2003) Dispersal patterns of endemic alpine butterflies with contrasting population structures: erebia epiphron and E. sudetica. Pop Ecol 45:115–123CrossRefGoogle Scholar
  52. Kuras T, Sitek J, Liška J, Mazalová M, Černá K (2009) Motýli (Lepidoptera) národní přírodní rezervace Praděd (CHKO Jeseníky): implikace poznatků v ochraně území. Čas. Slez. Muz. Opava (A) 58:250–288Google Scholar
  53. Laibner S (2000) Elateridae of the Czech and Slovak Republics. Kabourek, ZlínGoogle Scholar
  54. Lednický V (1985) Podnebí Praděda. Sev Morav 49:44–48Google Scholar
  55. Lindroth CH (1992a) Ground beetles (Carabidae) of Fennoscandia. A zoogeographic study. Part I. Specific knowledge regarding the species, Smithsonian Institute Libraries and the National Science Foundation, WashingtonGoogle Scholar
  56. Lindroth CH (1992b) Ground beetles (Carabidae) of Fennoscandia. A zoogeographic study. Part III. General analysis with a discussion on biogegraphic principies, Smithsonian Institute Libraries and the National Science Foundation, WashingtonGoogle Scholar
  57. Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: carabidae). Annual Review of Entomology 41:231–236PubMedCrossRefGoogle Scholar
  58. Mackenzie D (1989) Alpine countries seek controls on skiers, builder and roads. New Sci 124(1686):22Google Scholar
  59. Mani MS (1968) Ecology and Biogeography of High Altitude Insects. W. Junk, HagueCrossRefGoogle Scholar
  60. Martínková Z, Honěk A (2004) Gastrophysa viridula (Coleoptera: chrysomelidae) and biocontrol of Rumex—a review. Plant Soil Environ 50:1–9CrossRefGoogle Scholar
  61. Mason NWH, MacGillivray K, Steel JB, Wilson JB (2003) An index of functional diversity. Journal of Vegetation Science 14:571–578CrossRefGoogle Scholar
  62. Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evennes and functional divergence: the primary components of functional diversity. Oikos 111:112–118CrossRefGoogle Scholar
  63. Matalin AV (2007) Typology of life cycles of ground beetles (Coleoptera, Carabidae) in western palearctic. Entomol Rev 87:947–972CrossRefGoogle Scholar
  64. Meyer E (1999) The impact of summer and winter tourism on the fauna of alpine soils in Western Austria (Oetztal Alps, Ratikon). Revue Suisse de Zoologie 100:519–527Google Scholar
  65. Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, OxfordGoogle Scholar
  66. Nagy L, Grabherr G, Körner C, Thompson DBA (eds) (2003) Alpine biodiversity in Europe. Springer, BerlinGoogle Scholar
  67. Negro M, Casale A, Migliore L, Palestrini C, Rolando A (2007) The effect of local anthropogenic habitat heterogenity on assemblages of carabids (Coleoptera, Caraboidea) endemic to the Alps. Biodiversity and Conservation 16:3919–3932CrossRefGoogle Scholar
  68. Negro M, Isaia M, Palestrini C, Rolando A (2009) The impact of forest ski-pistes on diversity of ground-dwelling arthropods and small mammals in the Alps. Biodiversity and Conservation 18:2799–2821CrossRefGoogle Scholar
  69. Negro M, Isaia M, Palestrini C, Schoenhofer A, Rolando A (2010) The impact of high-altitude ski pistes on ground-dwelling arthropods in the Alps. Biodiversity and Conservation 19:1853–1870CrossRefGoogle Scholar
  70. Negro M, Novara C, Bertolino S, Rolando A (2013) Ski-pistes are ecological barriers to forest small mammals. Eur J Wild Res 59:57–67CrossRefGoogle Scholar
  71. Niemelä J, Koivula M, Kotze JH (2007) The effects of forestry on carabid beetles (Coleoptera: carabidae) in boreal forests. Journal of Insect Conservation 11:5–18CrossRefGoogle Scholar
  72. Papp RP (1978) A nival aeolian ecosystem in California. Arctic and Alpine Research 10:17–131CrossRefGoogle Scholar
  73. Pintar M, Mali B, Kraigher H (2009) The impact of ski slopes management on Krvavec ski resort (Slovenia) on hydrological functions of soils. Biologia 64(3):639–642CrossRefGoogle Scholar
  74. Pohl M, Alig D, Körner Ch, Rixen C (2009) Higher plant diversity enhances soil stability in disturbed alpine ecosystem. Plant and Soil 324:91–102CrossRefGoogle Scholar
  75. Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: carabidae) as bioindicators. Biodiversity and Conservation 12:487–506CrossRefGoogle Scholar
  76. Ries BJ (1996) Landscape damage by skiing at the Schauinsland in the Black Forest, Germany. Mt Res Dev 16:27–40CrossRefGoogle Scholar
  77. Ristić R, Kašanin-Grubin M, Radić B, Nikić Z, Vasiljević N (2012) Land degradation at the Stara Planina ski resort. Environ Manag 49:580–592CrossRefGoogle Scholar
  78. Rixen C, Stoeckli V, Ammann W (2002) Does artificial snow production affect soil and vegetation of ski pistes? A review. Perspect Plant Ecol Evol Syst 5:219–230CrossRefGoogle Scholar
  79. Rixen C, Haeberli W, Stoeckli V (2004) Ground temperature under ski pistes with artificial and natural snow. Arctic, Antarctic, and Alpine Research 36:419–427CrossRefGoogle Scholar
  80. Rolando A, Caprio E, Rinaldi E, Ellena I (2007) The impact of high-altitude ski-runs on alpine grassland bird communities. Journal of Applied Ecology 44:210–219CrossRefGoogle Scholar
  81. Rolando A, Negro M, D′Entrèves PP, Balletto E, Palestrini C (2012) The effect of forest ski-pistes on butterfly assemblages in the Alps. Insect Conserv Divers. doi: 10.1111/j.1752-4598.2012.00204.x Google Scholar
  82. Roux-Fouillet P, Wipf S, Rixen C (2011) Long-term impacts of ski piste management on alpine vegetation and soils. Journal of Applied Ecology 48:906–915CrossRefGoogle Scholar
  83. Sanecki GM, Green K, Wood H, Lindenmayer D (2006) The implications of snow-based recreation for small mammals in the subnivean space in south-east Australia. Biological Conservation 129:511–518CrossRefGoogle Scholar
  84. Schmidtová T, Hajný L, Halfar J, Chlapek J (2009) Chráněná krajinná oblast Jeseníky. Ochrana přírody 64(3):2–6Google Scholar
  85. Schmitt T, Hewitt GM, Müller P (2006) Disjunct distributions during glacial and interglacial periods in mountain butterflies: erebia epiphron as an example. Journal of Evolutionary Biology 19:108–113PubMedCrossRefGoogle Scholar
  86. Schöb C, Kammer PM, Choler P, Veit H (2009) Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Plant Ecology 200:91–104CrossRefGoogle Scholar
  87. Simons P (1988) Aprés ski le deluge. New Sci 117(1595):49–52Google Scholar
  88. Smerczyński S (1968) Klucze do oznaczania owadów Polski, Część XIX, Chrząszcze—Coleoptera. Zeszyt 98c, Ryjkowce-Curculionidae. Podrodziny Tanymecinae, Cleoninae, Tanyrhynchinae, Hylobiinae. PWN, WarszawaGoogle Scholar
  89. Sømme L, Conradi-Larsen EM (1977) Cold-hardiness of collembolans and oribatid mites from windswept mountain ridges. Oikos 29:118–126CrossRefGoogle Scholar
  90. Spence JR, Niemelä JK (1994) Sampling ground beetle assemblages with pitfall traps: the madness and the method. Can Entomol 126:881–894CrossRefGoogle Scholar
  91. Stanovský J, Pulpán J (2006) Střevlíkovití brouci Slezska (severovýchodní Moravy). Muzeum Beskyd, Frýdek-MístekGoogle Scholar
  92. Strong AM, Dickert CA, Bell RT (2002) Ski trail effect on beetle (Coloeptera: carabidae, Elateridae) community in Vermont. Journal of Insect Conservation 6:149–159CrossRefGoogle Scholar
  93. Štursa J (1998) Research and management of the Giant Mountain’s arctic-alpine tundra (Czech Republic). Ambio 27:358–360Google Scholar
  94. Šustek Z (2006) Carabid communities of alpine and subalpine ecosystems of West Carpathians. Muz Olten Drakova. Stud Comun. Stiintele Natur 22:138–147Google Scholar
  95. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  96. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY, USAGoogle Scholar
  97. Thiel D, Jenni-Eiermann S, Braunisch V, Palme R, Jenni L (2008) Ski tourism affects habitat use and evokes a physiogical stress response in capercaillie Tetrao urogallus: a new methodical approach. Journal of Applied Ecology 45:545–853Google Scholar
  98. Thomas CFG, Parkinson L, Marshall EJP (1998) Isolating the component of activity-density for the carabid beetle Pterostichus melanarius in farmland. Oecologia 116:103–112CrossRefGoogle Scholar
  99. Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT (2001) Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochem 56:175–190CrossRefGoogle Scholar
  100. Titus JH, Landau F (2003) Ski slope vegetation of Lee Canyon, Nevada, USA. Southwest Nat 48:491–504CrossRefGoogle Scholar
  101. Titus JH, Tsuyuzaki S (1998) Ski slope vegetation at Snoqualmie Pass, Washington State, USA, and comparison with ski slope vegetation in temperate coniferous forest zone. Ecological Research 13:97–104CrossRefGoogle Scholar
  102. Treml V, Banas M (2008) The effect of exposure on alpine treeline position: a case study from High Sudetes, Czech Republic. Arctic, Antarctic, and Alpine Research 40:751–760CrossRefGoogle Scholar
  103. Warchalowski (1973) Stonkowate - Coleoptera. Podrodziny Chrysomelinae i Galerucinae. Klucze do oznaczania owadów Polski. XIX, 94b. WarszawaGoogle Scholar
  104. Watson A, Moss R (2004) Impacts of ski-developments on ptarmigan (Lagopus mutus) at Cairn Gorm, Scotland. Biological Conservation 116:267–275CrossRefGoogle Scholar
  105. Wipf S, Rixen C, Fischer M, Schmid B, Stoeckli V (2005) Effects of ski piste preparation on alpine vegetation. Journal of Applied Ecology 42:306–316CrossRefGoogle Scholar
  106. Zuazo VHD, Pleguezuelo CRR (2008) Soil-erosion and runoff prevention by plant covers. A review. Agron Sustain Dev 28:65–86CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. Kašák
    • 1
  • M. Mazalová
    • 2
  • J. Šipoš
    • 2
  • T. Kuras
    • 2
  1. 1.Laboratory of Ornithology and Department of Zoology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  2. 2.Department of Ecology and Environmental Sciences, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations