Journal of Insect Conservation

, Volume 17, Issue 4, pp 787–795 | Cite as

Spotting the right spot: computer-aided individual identification of the threatened cerambycid beetle Rosalia alpina

  • Giovanni Caci
  • Alessandro Bruno Biscaccianti
  • Luca Cistrone
  • Luciano Bosso
  • Antonio Pietro Garonna
  • Danilo Russo


Individual identification of animals is of paramount importance to analyze population size, dispersal, habitat preferences or behaviour. Especially for sensitive, threatened species, it is advisable to develop non-invasive recognition methods avoiding direct handling and tagging of the study subjects to be applied to procedures such as marking-recapture. Here we present an application of the I3S software for the individual recognition of the Rosalia longicorn Rosalia alpina based on the contour digitization of the spots present on the beetle’s elytra. Classification performances to individual level tested on an overall sample of 290 images (one per subject) were 94.8 (both elytra), 94.5 (right elytron) and 95.2 % (left elytron). Since I3S leaves the final decision to the operator, such high classification performances may be refined further in the final step leading to a fully reliable identification. We found that the identification performance was statistically supported and that the influence of two main error sources (contour tracing and angle under which the images were taken) was negligible. Our approach minimizes the subjectivity of a qualitative manual comparison of images and greatly reduces the time taken to visually retrieve the image of an individual especially for large photo libraries. It may be successfully used in surveys covering large areas and involving many untrained operators such as volunteers or park rangers. We propose that I3S can be applied to other insect species presenting characteristic spot patterns. To our best knowledge, this is the first study using computer-aided identification of a terrestrial arthropod.


Forest Habitats Directive Mark-recapture Monitoring Photoidentification Population 



Thanks go to Rome Zoological Museum for allowing us to take photographs of R. alpina specimens in their collection. Alessandro Franza and Benedetta Ciaccio kindly provided us with some photographs taken in the field of live R. alpina specimens (including that used for Fig. 1). DR was partly funded by the Abruzzo Lazio and Molise National Park.


  1. Anderson DR, Burnham KP, White GC (1985) Problems in estimating age-specific survival rates from recoveries of birds ringed as young. J Anim Ecol 54:89–98CrossRefGoogle Scholar
  2. Auckland JA, Debinski DM, Clark WR (2004) Survival, movement, and resource use of the butterfly Parnassius clodius. Ecol Entomol 29:139–149CrossRefGoogle Scholar
  3. Bairlein F, Schaub M (2009) Ringing and the study of mechanisms of migration. Ring Migr 24:162–168CrossRefGoogle Scholar
  4. Bancroft JS, Smith MT (2005) Dispersal and influences on movement for Anoplophora glabripennis calculated from individual mark-recapture. Entomol Exp Appl 116:83–92CrossRefGoogle Scholar
  5. Bosso L, Rebelo H, Garonna AP, Russo D (2012) Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina. J Nat Conserv.
  6. Buckland ST, Goudie IBJ, Borchers DL (2000) Wildlife population assessment: past developments and future directions. Biometrics 56:1–12PubMedCrossRefGoogle Scholar
  7. Calvo B, Furness RW (1992) A review of the use and the effects of marks and devices on birds. Ring Migr 13:129–151CrossRefGoogle Scholar
  8. Campanaro A, Bardiani M, Spada L, Carnevali L, Montalto F, Antonini G, Mason F, Audisio P (2011) Linee Guida per il Monitoraggio e la Conservazione dell’Entomofauna Saproxilica. Quaderni Conservazione Habitat. Accessed 11 Dec 2012
  9. den Hartog J, Reijns R (2011) I3S Contour Manual (2011). Interactive Individual Identification System version 3.0. Accessed 15 Dec 2012
  10. Dietz C, Dietz I, Ivanova T, Siemers B (2006) Effects of forearm bands on horseshoe bats (Chiroptera: Rhinolophidae). Acta Chiropterol 8:523–535CrossRefGoogle Scholar
  11. Drag L, Hauck D, Pokluda P, Zimmermann K, Cizek L (2011) Demography and dispersal ability of a threatened saproxylic beetle: a mark-recapture study of the rosalia longicorn (Rosalia alpina). PLoS One 6(6):e21345 doi: 10.1371/journal.pone.0021345
  12. Duelli P, Wermelinger B (2005) Der Alpenbock (Rosalia alpina). Ein seltener Bockkäfer als Flaggschiff Art. Merkblatt für die Praxis 39:1–8Google Scholar
  13. Fischhoff IR, Sundaresan SR, Cordingley J, Rubenstein DI (2007) Habitat use and movements of plains zebra (Equus burchelli) in response to predation in danger from lions. Behav Ecol 18:725–729CrossRefGoogle Scholar
  14. Frisch AJ, Hobbs JA (2007) Photographic identification based on unique, polymorphic colour patterns: a novel method for tracking a marine crustacean. J Exp Mar Biol Ecol 351:294–299CrossRefGoogle Scholar
  15. Hiby L, Lovell P, Patil N, Samba Kumar N, Gopalaswamy AM, Ullas Karanth K (2009) A tiger cannot change its stripes: using a three-dimensional model to match images of living tigers and tiger skins. Biol Lett 5:383–386PubMedCrossRefGoogle Scholar
  16. Huffard CL, Caldwell RL, DeLoach N, Gentry DW, Humann P et al (2008) Individually unique body color patterns in Octopus (Wunderpus photogenicus) allow for photoidentification. PLoS One 3(11):e3732. doi: 10.1371/journal.pone.0003732 PubMedCrossRefGoogle Scholar
  17. IUCN (2009) IUCN red list of threatened species. Version 2009.2. Accessed 11 Dec 2012
  18. Jurc M, Ogris N, Pavlin R, Borkovic D (2008) Forest as a habitat of saproxylic beetles on Natura 2000 sites in Slovenia. Rev écol (Terre Vie) 63:53–66Google Scholar
  19. Kelly MJ (2001) Computer-aided photograph matching in studies using individual identification: An example from Serengeti cheetahs. J Mammal 82:440–449CrossRefGoogle Scholar
  20. Lachat T, Ecker K, Duelli P, Wermelinger B (2013) Population trends of Rosalia alpina (L.) in Switzerland: a lasting turnaround? J Insect Conserv doi: 10.1007/s10841-013-9549-9
  21. Leather SR, Basset Y, Hawkins BA (2008) Insect conservation: finding the way forward. Insect Conserv Divers 1:67–69CrossRefGoogle Scholar
  22. Luce JM (1996) Rosalia alpina (Linnaeus, 1758). In: van Helsdingen PJ, Willemse L, Speight MCD (eds) Background information on invertebrates of the Habitats Directive and the Bern Convention. Part I—Crustacea, Coleoptera and Lepidoptera. Nat Environ 79:70–73Google Scholar
  23. Mallet J, Longino JT, Murawski D, Murawski A, Simpson de Gamboa A (1987) Handling effects in Heliconius: where do all the butterflies go? J Anim Ecol 56:377–386CrossRefGoogle Scholar
  24. Marion WR, Shamis JD (1977) An annotated bibliography of bird marking techniques. Bird Banding 48:42–61CrossRefGoogle Scholar
  25. Martin-Smith KM (2011) Photo-identification of individual weedy sea dragons Phyllopteryx taeniolatus and its application in estimating population dynamic. J Fish Biol 78:1757–1768PubMedCrossRefGoogle Scholar
  26. Milner-Gulland EJ, Rowcliffe JM (2007) Conservation and sustainable use. A handbook of techniques. Oxford University Press, OxfordCrossRefGoogle Scholar
  27. Miththapala S, Seidensticker J, Phillips LG, Fernando SBU, Smallwood JA (1989) Identification of individual leopards (Panthera pardus kotiya) using spot pattern variation. J Zool 218:527–536CrossRefGoogle Scholar
  28. Mowat G, Slough BG, Rivard R (1994) A comparison of three live capturing devices for lynx, capture efficiency and injuries. Wildl Soc B 22:644–650Google Scholar
  29. Murray DL, Fuller MR (2000) A critical review of the effects of marking on the biology of vertebrates. In: Boitani L, Fuller TK (eds) Research techniques in animal ecology: controversies and consequences. Columbia University Press, New York, pp 15–64Google Scholar
  30. Nichols JD (1992) Capture-recapture models: using marked animals to study population dynamics. Bioscience 42:94–102CrossRefGoogle Scholar
  31. Nichols JD, Kaiser A (1999) Quantitative studies of bird movement: a methodological review. Bird Study 46(suppl.):S289–S298CrossRefGoogle Scholar
  32. Nichols JD, Pollock KH (1983) Estimation methodology in contemporary small mammals capture-recapture studies. J Mammal 64:253–260CrossRefGoogle Scholar
  33. North PM, Cormack RM (1981) On Seber’s method for estimating age-specific bird survival rates from ringing recoveries. Biometrics 37:103–112CrossRefGoogle Scholar
  34. Nürnberger B (1996) Local dynamics and dispersal in a structured population of the whirligig beetle Dineutus assimilis. Oecologia 106:325–336CrossRefGoogle Scholar
  35. Pagola Carte S (2011) Seguimiento de la población de Rosalia alpina en el hayedo de trasmochos de Oieleku (LIC de Aiako Harria) (Acción E.7 del Proyecto Life+ “Maneyo y Conservación de los hábitats de Osmoderma eremita, Rosalia alpina y otros saproxílicos de interés comunitario en Gipuzkoa”). Dissertation, Donostia-SanSebastián p 57Google Scholar
  36. Pennycuick CJ (1978) Identification using natural markings. In: Stonehouse B (ed) Animal markings: recognition marking of animals in research. Macmillan Publishers Limited, London, pp 147–159Google Scholar
  37. Pradel R (1996a) Animal dispersal within subdivided populations: an approach based on monitoring individuals. Acta Oecol 17:475–483Google Scholar
  38. Pradel R (1996b) Utilization of capture-mark-recapture for the study of recruitment and population growth rate. Biometrics 52:703–709CrossRefGoogle Scholar
  39. Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370CrossRefGoogle Scholar
  40. Russo D, Cistrone L, Garonna AP (2011) Habitat selection in the highly endangered beetle Rosalia alpina: a multiple spatial scale assessment. J Insect Conserv 15:685–693CrossRefGoogle Scholar
  41. Sacchi R, Scali S, Pellitteri-Rosa D, Pupin F, Gentilli A, Tettamanti S, Caviglioli L, Racina L, Maiocchi V, Galeotti P, Fasola M (2010) Photographic identification in reptiles: a matter of scales. Amphib Reptil 31:489–502CrossRefGoogle Scholar
  42. Samways MJ, McGeoch MA, New TR (2010) Insect conservation: a handbook of approaches and methods. Oxford University Press, United KingdomGoogle Scholar
  43. Schofield G, Katselidis KA, Dimopoulos P, Pantis JD (2008) Investigating the viability of photoidentification as an objective tool to study endangered sea turtle populations. J Exp Mar Biol Ecol 360:103–108CrossRefGoogle Scholar
  44. Schwarz CJ, Seber GAF (2001) Estimating animal abundance: review III. Stat Sci 14:1–134Google Scholar
  45. Speed CW, Meekan MG, Bradshaw CJA (2007) Spot the match—wildlife photoidentification using information theory. Front Zool 4:2. doi: 10.1186/1742-9994-4-2 PubMedCrossRefGoogle Scholar
  46. Spendelow JA (1991) Postfledging survival and recruitment of known-origin Roseate Terns (Sterna dougalli) at Falkner Island, Connecticut. Colon Waterbirds 14:108–115CrossRefGoogle Scholar
  47. Townsend Peterson A (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 4:419–433CrossRefGoogle Scholar
  48. Van Tienhoven AM, den Hartog JE, Reijns RA, Peddemors VM (2007) A computer-aided program for pattern-matching natural marks on the spotted ragged tooth shark Carcharias taurus (Rafinesque, 1810). J Appl Ecol 44:273–280CrossRefGoogle Scholar
  49. Walker TJ, Wineriter SA (1981) Marking techniques for recognizing individual insects. Fla Entomol 64:18–29CrossRefGoogle Scholar
  50. Wilson B, Hammond PS, Thompson PM (1999) Estimating size and assessing trends in a coastal bottlenose dolphin population. Ecol Appl 9:288–300CrossRefGoogle Scholar
  51. Zulandt-Schneider RA, Huber R, Moore PA (2001) Individual and status recognition in the crayfish, Orconectes rusticus: the effects of urine release on fight dynamics. Behaviour 138:137–153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Giovanni Caci
    • 1
  • Alessandro Bruno Biscaccianti
    • 2
  • Luca Cistrone
    • 3
  • Luciano Bosso
    • 4
  • Antonio Pietro Garonna
    • 4
  • Danilo Russo
    • 1
    • 5
  1. 1.Laboratorio di Ecologia Applicata, Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPortici (Napoli)Italy
  2. 2.(Roma)Italy
  3. 3.Forestry and ConservationCassino (Frosinone)Italy
  4. 4.Laboratorio di Entomologia “Ermenegildo Tremblay”, Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPortici (Napoli)Italy
  5. 5.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations