Journal of Insect Conservation

, Volume 17, Issue 4, pp 715–724 | Cite as

Rove beetles respond heterogeneously to urbanization

  • Tibor Magura
  • Dávid Nagy
  • Béla Tóthmérész
Original Paper


Effects of urbanization on rove beetles were studied along a rural-suburban-urban forested gradient characterized by increasing human disturbance in and around Debrecen city (Hungary). Three classical and six novel hypotheses regarding the response of species to urbanization were tested. We found that overall species richness increased significantly with decreasing urbanization (i) as it is predicted by the increasing disturbance hypothesis, and contradicting (ii) the intermediate disturbance hypothesis that predicts the highest species richness in the moderately disturbed suburban area. (iii) The number of forest-associated species was significantly lower in the urban area compared to suburban and rural areas, as predicted by the habitat specialist hypothesis. All of the proposed novel hypotheses are about habitat alteration caused by the urbanization were corroborated. The (iv) richness of hygrophilous species was the highest in the rural area (hygrophilous species hypothesis), while (v) the number of thermophilous species was higher in the urban area (thermophilous species hypothesis). The richness of species directly or indirectly feeding on decaying organic materials ((vi) saprophilous, (vii) phytodetriticol, (viii) myrmecophilous, (ix) mycetophilous species hypotheses) was also highest in the rural area compared to the urban one. We stress that overall species richness is not the most appropriate indicator of the impacts of urbanization and accompanying disturbance on these beetles. Instead, habitat affinity and ecological traits of the species give more information about what habitat properties and environmental variables change drastically during urbanization.


Diversity Disturbance Forest specialist species GlobeNet Habitat affinity Staphylinids 



We are grateful to Dávid Bogyó, Roland Horváth, Levente Lality, Szabolcs Mizser, Gyula Szabó and Ottó Szalkovszki for their help during the field work. We also grateful for György Makranczy and László Ádám for their help in identifications. The work is supported by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007, and TÁMOP-4.2.2/B-10/1-2010-0024 projects.


  1. Alaruikka DM, Kotze DJ, Matveinen K, Niemelä J (2002) Carabid and spider assemblages along an urban to rural gradient in Southern Finland. J Insect Conserv 6:195–206CrossRefGoogle Scholar
  2. Boháč J (1999) Staphylinid beetles as bioindicators. Agr Ecosyst Environ 74:357–372CrossRefGoogle Scholar
  3. Carreiro MM, Tripler CE (2005) Forest remnants along urban-rural gradients: examining their potential for global change research. Ecosystems 8:568–582CrossRefGoogle Scholar
  4. Collins JP, Kinzig A, Grimm NB, Fagan WF, Hope D, Wu J, Borer WT (2000) A new urban ecology. Am Sci 88:416–425CrossRefGoogle Scholar
  5. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310PubMedCrossRefGoogle Scholar
  6. Deichsel R (2006) Species change in an urban setting-ground and rove beetles (Coleoptera: Carabidae and Staphylinidae) in Berlin. Urban Ecosyst 9:161–1789CrossRefGoogle Scholar
  7. Desender K, Ervynck A, Tack G (1999) Beetle diversity and historical ecology of woodlands in Flanders. Belg J Zool 129:139–156Google Scholar
  8. Deutschewitz K, Lausch A, Kühn I, Klotz S (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Global Ecol Biogeogr 12:299–311CrossRefGoogle Scholar
  9. Elek Z, Lövei GL (2007) Patterns in ground beetle (Coleoptera: Carabidae) assemblages along an urbanisation gradient in Denmark. Acta Oecol 32:104–111CrossRefGoogle Scholar
  10. Gaublomme E, Hendrickx F, Dhuyvetter H, Desender K (2008) The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biol Conserv 141:2585–2596CrossRefGoogle Scholar
  11. Germann C, Sattler T, Obrist MK, Moretti M (2008) Xerothermophilous and grassland ubiquist species dominate the weevil fauna of Swiss cities (Coleoptera, Curculionoidea). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 81:141–154Google Scholar
  12. Gray JS (1989) Effects of environmental stress on species rich assemblages. Biol J Linn Soc 37:19–32CrossRefGoogle Scholar
  13. Hornung E, Tóthmérész B, Magura T, Vilisics F (2007) Changes of isopod assemblages along an urban-suburban-rural gradient in Hungary. Eur J Soil Biol 43:158–165CrossRefGoogle Scholar
  14. Horváth R, Magura T, Tóthmérész B (2012) Ignoring ecological demands masks the real effect of urbanization: a case study of ground-dwelling spiders along a rural-urban gradient in a lowland forest in Hungary. Ecol Res 27:1069–1077CrossRefGoogle Scholar
  15. Irmler U, Gürlich S (2007) What do rove beetles (Coleoptera: Staphylinidae) indicate for site condition? Faun Ökol Mitt 8:439–455Google Scholar
  16. Klimaszewski J, Langor DW (2009) Rove beetles (Staphylinidae) in Canadian forests and their value as indicators of changing environmental conditions. Arthoropods Can For 4:9–11Google Scholar
  17. Koch K (1989) Ökologie, Band 1. In: Freude H, Harde K, Lohse G (eds) Die Käfer Mitteleuropas. Goecke and Evers Verlag, Krefels, p 440Google Scholar
  18. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, AmsterdamGoogle Scholar
  19. Lessard J-P, Buddle CM (2005) The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson Nature Reserve, Quebec. Can Entomol 137:215–225CrossRefGoogle Scholar
  20. Lövei GL, Magura T, Tóthmérész B, Ködöböcz V (2006) The influence of matrix and edges on species richness patterns of ground beetles (Coleoptera: Carabidae) in habitat islands. Global Ecol Biogeogr 15:83–289Google Scholar
  21. Magura T, Tóthmérész B, Molnár T (2004) Changes in carabid beetle assemblages along an urbanization gradient in the city of Debrecen, Hungary. Landscape Ecol 19:747–759CrossRefGoogle Scholar
  22. Magura T, Tóthmérész B, Elek Z (2005) Impacts of leaf-litter addition on carabids in a conifer plantation. Biodivers Conserv 14:475–491CrossRefGoogle Scholar
  23. Magura T, Hornung E, Tóthmérész B (2008a) Abundance patterns of terrestrial isopods along an urbanization gradient. Commun Ecol 9:115–120CrossRefGoogle Scholar
  24. Magura T, Lövei GL, Tóthmérész B (2008b) Time-consistent rearrangement of carabid beetle assemblages by an urbanization gradient in Hungary. Acta Oecol 34:233–243CrossRefGoogle Scholar
  25. Magura T, Horváth R, Tóthmérész B (2010a) Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landscape Ecol 25:621–629CrossRefGoogle Scholar
  26. Magura T, Lövei GL, Tóthmérész B (2010b) Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Global Ecol Biogeogr 19:16–26CrossRefGoogle Scholar
  27. McDonnell MJ, Pickett STA, Groffman P, Bohlen P, Pouyat RV, Zipperer WC, Parmelee RW, Carreiro MM, Medley K (1997) Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst 1:21–36CrossRefGoogle Scholar
  28. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176CrossRefGoogle Scholar
  29. Molnár T, Magura T, Tóthmérész B (2001) Ground beetles (Carabidae) and edge effect in oak-hornbeam forest and grassland transects. Eur J Soil Biol 37:297–300CrossRefGoogle Scholar
  30. Newton AF (1990) Coleoptera: Staphylinidae adults and larvae. In: Dindall DL (ed) Soil biology guide. Wiley, New York, pp 1137–1174Google Scholar
  31. Niemelä J (1999) Ecology and urban planning. Biodivers Conserv 8:119–131CrossRefGoogle Scholar
  32. Niemelä J, Kotze J (2009) Carabid beetle assemblages along urban to rural gradients: a review. Landscape Urban Plann 92:65–71CrossRefGoogle Scholar
  33. Niemelä J, Kotze J, Ashworth A, Brandmayr P, Desender K, New T, Penev L, Samways M, Spence J (2000) The search for common anthropogenic impacts on biodiversity: a global network. J Insect Conserv 4:3–9CrossRefGoogle Scholar
  34. Niemelä J, Kotze J, Venn S, Penev L, Stoyanov I, Spence J, Hartley D, Montes de Oca E (2002) Carabid beetle assemblages (Coleoptera, Carabidae) across urban-rural gradients: an international comparison. Landscape Ecol 17:387–401CrossRefGoogle Scholar
  35. Paillet Y, Berges L, Hjältén J, Ódor P, Avon C, Bernhardt-Römermann M, Bijlsma R-J, De Bruyn L, Fuhr M, Grandin U, Kanka R, Lundin L, Luque S, Magura T, Matesanz S, Mészáros I, Sebastia M-T, Schmidt W, Standovár T, Tóthmérész B, Uotila A, Valladares F, Vellak K, Virtanen R (2009) Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–112CrossRefGoogle Scholar
  36. Pohl GR, Langor DW, Spence JR (2007) Rove beetles and ground beetles (Coleoptera: Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western Canadian foothills forests. Biol Conserv 137:294–307CrossRefGoogle Scholar
  37. Pohl GR, Langor DW, Klimaszewski J, Work T, Paquin P (2008) Rove beetles (Coleoptera: Staphylinidae) in northern Nearctic forests. Can Entomol 140:415–436CrossRefGoogle Scholar
  38. Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, Bath, p 1988Google Scholar
  39. Rebele F (1994) Urban ecology and special features of urban ecosystems. Global Ecol Biogeogr 4:173–187CrossRefGoogle Scholar
  40. Riedel P, Navrátil M, Tuf IH, Tufová J (2009) Terrestrial isopods (Isopoda: Oniscidea) and millipedes (Diplopoda) of the City of Olomouc (Czech Republic). In: Tajovský K, Schlaghamerský J, Pižl V (eds) Contributions to Soil Zoology in Central Europe III. ISB BC AS CR, České Budějovice, pp 125–132Google Scholar
  41. Savitha S, Barve N, Davidar P (2008) Response of ants to disturbance gradients in and around Bangalore, India. J Trop Ecol 49:235–2434Google Scholar
  42. Simon E, Braun M, Vidic A, Bogyó D, Fábián I, Tóthmérész B (2011) Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environ Pollut 159:1229–1233PubMedCrossRefGoogle Scholar
  43. Simon E, Puky M, Braun M, Tóthmérész B (2012) Assessment of the effects of urbanization on trace elements of toe bones. Environ Monit Assess 184:5749–5754PubMedCrossRefGoogle Scholar
  44. Simon E, Vidic A, Braun M, Fábián I, Tóthmérész B (2013) Trace element concentrations in soils along urbanization gradients in the city of Wien, Austria. Environ Sci Pollut Res 20:917–924CrossRefGoogle Scholar
  45. Stan M (2008) New data on the rove beetle fauna (Coleoptera: Staphylinidae) from Bucureşti and its surroundings. Travaux du Muséum National d’Histoire Naturelle 51:369–386Google Scholar
  46. Tóthmérész B, Máthé I, Balázs E, Magura T (2011) Responses of carabid beetles to urbanization in Transylvania (Romania). Landscape Urban Plann 101:330–337CrossRefGoogle Scholar
  47. United Nations (2009) World urbanization prospects: the 2009 revision.
  48. Vepsäläinen K, Ikonen H, Koivula MJ (2008) The structure of ant assemblages in an urban area of Helsinki, southern Finland. Ann Zool Fenn 45:109–127CrossRefGoogle Scholar
  49. Zuur A, Ieno EN, Walker N, Saveiliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Tibor Magura
    • 1
    • 2
  • Dávid Nagy
    • 3
    • 4
  • Béla Tóthmérész
    • 3
    • 4
  1. 1.Hortobágy National Park DirectorateDebrecenHungary
  2. 2.Hortobágy National Park DirectorateDebrecenHungary
  3. 3.Department of EcologyUniversity of DebrecenDebrecenHungary
  4. 4.Department of EcologyUniversity of DebrecenDebrecenHungary

Personalised recommendations