Journal of Insect Conservation

, Volume 17, Issue 4, pp 653–662 | Cite as

Population trends of Rosalia alpina (L.) in Switzerland: a lasting turnaround?

  • Thibault LachatEmail author
  • Klaus Ecker
  • Peter Duelli
  • Beat Wermelinger


Many species that depend on old trees and dead wood are suffering from habitat losses and intensive forest management. For the conspicuous cerambycid beetle Rosalia alpina, a relative sampling analysis combined with a distribution model showed a population decrease in Switzerland between 1900 and World War II. This negative trend can be ascribed to the abandonment of traditional management such as wooded pasture and to the expansion of high forest promoted by modern forestry. Since that period, the population of R. alpina, has been increasing and each single relict population of this species was maintained. These positive population trend can be explained by less intensive forest management and a shift from fuel-wood production to timber wood. Today, many more old beech trees and much more dead wood remain in Swiss forests than 50 years ago. Consequently, the habitat conditions necessary for the development of the Rosalia longicorn have improved, especially on steep terrain in colline and submontane regions. However, it is still uncertain whether current population sizes can guarantee the survival of this species in the long term, especially as fuel-wood production is expected to become more intensive in Switzerland in future decades. The conservation of this species requires, therefore, the establishment of natural forest reserves and dead wood islands or the restoration of wooded pastures with scattered habitat trees. The Rosalia longicorn could then act as an umbrella species for other species that depend on old trees and dead wood.


Saproxylic beetles Relative sampling Potential distribution Forest management Population trend 



We are grateful to the Swiss Biological Records Center ( and the National Forest Inventory ( for providing data and to Urs Gimmi and Matthias Bürgi for their information concerning forest history. We would like to thank Silvia Dingwall and Curtis Gautschi for the language revision of the manuscript.


  1. BAFU (2011) Liste der National Prioritären Arten. Arten mit nationaler Priorität für die Erhaltung und Förderung, stand 2010. Umwelt-Vollzug Nr. 1103. Bundesamt für Umwelt, BernGoogle Scholar
  2. Bense U (2002) Schutzmaßnahmen für den Alpenbock (Rosalia alpina) im Bereich der Schwäbischen Alb. DgaaE Nachrichten 16:57–58Google Scholar
  3. Bense U, Bussler H (2003) 4.10 Rosalia alpina (LINNAEUS, 1758). In: Petersen B, Ellwanger G, Biewald G et al (eds) Das europäische Schutzgebietssystem Natura 2000, Ökologie und Verbreitung von Arten der FFH-Richtlinie in Deutschland. Band 1: Pflanzen und Wirbellose, vol 69. Schriftenr. Landschaftspfl. Naturschutz, Bonn, pp 426–432Google Scholar
  4. Brändli UB (ed) (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Eid. Forschungsanstallt für Wald, Schnee und LandschaftGoogle Scholar
  5. Brändli UB, Abegg M (2009) Der Schweizer Wald wird immer natürlicher. Wald und Holz 7:27–29Google Scholar
  6. Brunet J, Felton A, Lindbladh M (2012) From wooded pasture to timber production—changes in a European beech (Fagus sylvatica) forest landscape between 1840 and 2010. Scand J For Res 27(3):245–254. doi: 10.1080/02827581.2011.633548 CrossRefGoogle Scholar
  7. Bürgi M (1998) Wie veränderte sich der Wald als Lebensraum im 19. und 20. Jahrhundert?—ein Fallbeispiel aus dem Zürcher Unter- und Weinland. Schweiz Z Forstwes 149(10):758–769Google Scholar
  8. Bürgi M (1999) A case study of forest change in the Swiss lowlands. Landsc Ecol 14(6):567–575CrossRefGoogle Scholar
  9. Bürgi M, Schuler A (2003) Driving forces of forest management—an analysis of regeneration practices in the forests of the Swiss central plateau during the 19th and 20th century. For Ecol Manag 176(1–3):173–183CrossRefGoogle Scholar
  10. Buse J, Schroder B, Assmann T (2007) Modelling habitat and spatial distribution of an endangered longhorn beetle—a case study for saproxylic insect conservation. Biol Conserv 137(3):372–381. doi: 10.1016/j.biocon.2007.02.025 CrossRefGoogle Scholar
  11. Bütler R, Lachat T (2009) Forests without harvesting: an opportunity for the saproxylic biodiversity. Schweiz Z Forstwes 160:324–333CrossRefGoogle Scholar
  12. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45(2):90–96Google Scholar
  13. Cizek L, Schlaghamersky J, Borucky J, Hauck D, Helesic J (2009) Range expansion of an endangered beetle: alpine Longhorn Rosalia alpina (Coleoptera: Cerambycidae) spreads to the lowlands of Central Europe. Entomol Fennica 20(3):200–206Google Scholar
  14. Drag L, Hauck D, Pokluda P, Zimmermann K, Cizek L (2011) Demography and dispersal ability of a threatened saproxylic beetle: a mark-recapture study of the Rosalia Longicorn (Rosalia alpina). PLoS One 6(6), e21345:1–8Google Scholar
  15. Duelli P, Wermelinger B (2010) Der Alpenbock. Ein seltener Bockkäfer als Flaggschiff-Art, vol 39. Merkblatt für die Praxis. WSL, BirmensdorfGoogle Scholar
  16. Gatter W (1997) Förderungsmöglichkeiten für den Alpenbock. Allg Forst Z Waldwirtsch Umweltvorsorge 213:1305–1306Google Scholar
  17. Gepp J (2002) Rosalia alpina L.—Österreichs Insekt des Jahres 2001. Entomologica Austriaca 5:3–4Google Scholar
  18. Grossmann H (1927) Die Waldweide in der Schweiz. ETHZ, ZurichGoogle Scholar
  19. Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23. doi: 10.1146/annurev.ecolysis.33.010802.150507 CrossRefGoogle Scholar
  20. Guisan A, Broennimann O, Engler R, Vust M, Yoccoz NG, Lehmann A, Zimmermann NE (2006) Using niche-based models to improve the sampling of rare species. Conserv Biol 20(2):501–511PubMedCrossRefGoogle Scholar
  21. Hanski I, Gaggiotti O (2004) Ecology, genetics and evolution of metapopulations. Elsevier Academic Press, San DiegoGoogle Scholar
  22. Hedenas L, Bisang I, Tehler A, Hamnede M, Jaederfelt K, Odelvik G (2002) A herbarium-based method for estimates of temporal frequency changes: mosses in Sweden. Biol Conserv 105(3):321–331CrossRefGoogle Scholar
  23. Hedin J, Isacsson G, Jonsell M, Komonen A (2008) Forest fuel piles as ecological traps for saproxylic beetles in oak. Scand J For Res 23(4):348–357. doi: 10.1080/02827580802269991 CrossRefGoogle Scholar
  24. Heller-Kellenberger I, Kienast F, Obrist MK, Walter TA (1997) Räumliche Modellierung der potentiellen faunistischen Biodiversität mit einem Expertensystem. Informationsblatt des Forschungsbereiches Landschaftsökologie 36:1–5Google Scholar
  25. Hofmann H, Urmi W, Bisang I, Müller N, Küchler M, Schnyder N, Schubiger C (2007) Retrospective assessement of frequency changes in Swiss bryophhytes over the last two centuries. Lindbergia 32:18–32Google Scholar
  26. Jeppsson T, Lindhe A, Gardenfors U, Forslund P (2010) The use of historical collections to estimate population trends: a case study using Swedish longhorn beetles (Coleoptera: Cerambycidae). Biol Conserv 143(9):1940–1950. doi: 10.1016/j.biocon.2010.04.015 CrossRefGoogle Scholar
  27. Kenderes K, Kral K, Vrska T, Standovar T (2009) Natural gap dynamics in a Central European mixed beech-spruce-fir old-growth forest. Ecoscience 16(1):39–47. doi: 10.2980/16-1-3178 CrossRefGoogle Scholar
  28. Leathwick JR, Elith J, Hastie T (2006) Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol Model 199(2):188–196. doi: 10.1016/j.ecolmodel.2006.05.022 CrossRefGoogle Scholar
  29. Lindhe A, Jeppsson T, Ehnström B (2010) Longhorn beetles in Sweden—changes in distribution and abundance over the last two hundred years. Entomologisk Tidskrift 131(4):241–508Google Scholar
  30. Luce JM (1996) Rosalia alpina. In: van Helsdingen PJ, Willemse L, Speight M (eds) Background information on invertebrates of the directive and the bern convention. Part I: Crustacea, Coleoptera and Lepidoptera, Nature and environment, vol 79, pp 70–73Google Scholar
  31. Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between and reconciliation of ‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9(5):655–671CrossRefGoogle Scholar
  32. Marek D (1994) Der Weg zum fossilen Energiesystem. Ressourcengeschichte der Kohle am Besipiel der Schweiz. In: Abelshauser W, Vandenhoeck R (eds) Umweltgeschichte umweltverträgliches Wirtschaften in historischer Perspektive. Vandenhoeck and Ruprecht, Göttingen, pp 57–75Google Scholar
  33. Michalcewicz J, Ciach M (2012) Rosalia longicorn Rosalia alpina (L.) (Coleoptera: Cerambycidae) uses roadside European ash trees Fraxinus excelsior L.—an unexpected habitat of an endangered species. Pol J Entomol 81:49–56Google Scholar
  34. Michalcewicz J, Ciach M, Bodziarczyk J (2011) The unknown natural habitat of Rosalia alpina (L.) (Coleoptera: Cerambycidae) and its trophic association with the mountain elm Ulmus glabra in Poland—a change of habitat and host plant. Pol J Entomol 80:23–31Google Scholar
  35. Monnerat C, Thorens P, TW T, Gonseth Y (2007) Liste rouge des Orthoptères menacés de Suisse. L’environnement pratique. Office fédéral de l’environnement Berne et Centre suisse de cartographie de la faune, NeuchâtelGoogle Scholar
  36. Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452CrossRefGoogle Scholar
  37. Mosteller F, Tukey JW (1977) Data analysis and regression: a second course in statistics. AW series in behavioral science: quantitative methods. Addison-Wesley, ReadingGoogle Scholar
  38. Müller J, Bussler H, Bense U, Brustel H, Flechtner G, Fowles A, Kahlen M, Möller G, Mühle H, Schmidl J, Zabransky P (2005) Urwald relict species—saproxylic beetles indicating structural qualities and habitat tradition. Waldökologie Online 2:106–113Google Scholar
  39. Nieto A, Alexander KNA (2010) European red list of saproxylic beetles. Publications Office of the European Union, LuxembourgGoogle Scholar
  40. Noble IR, Dirzo R (1997) Forests as human-dominated ecosystems. Science 277(5325):522–525CrossRefGoogle Scholar
  41. Ohsawa M, Shimokawa T (2011) Extending the rotation period in larch plantations increases canopy heterogeneity and promotes species richness and abundance of native beetles: implications for the conservation of biodiversity. Biol Conserv 144(12):3106–3116CrossRefGoogle Scholar
  42. Pfister C, Messerli P (1990) Switzerland. In: Turner BL (ed) The earth as transformed by human action global and regional changes in the biosphere over the past. Cambridge University Press, Cambridge, pp 641–652Google Scholar
  43. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259CrossRefGoogle Scholar
  44. Ponder WF, Carter GA, Flemons P, Chapman RR (2001) Evaluation of museum collection data for use in biodiversity assessment. Conserv Biol 15(3):648–657CrossRefGoogle Scholar
  45. Ranius T, Kindvall O, Kruys N, Jonsson BG (2003) Modelling dead wood in Norway spruce stands subject to different management regimes. For Ecol Manag 182(1–3):13–29CrossRefGoogle Scholar
  46. Russo D, Cistrone L, Garonna AP (2011) Habitat selection by the highly endangered long-horned beetle Rosalia alpina in Southern Europe: a multiple spatial scale assessment. J Insect Conserv 15(5):685–693. doi: 10.1007/s10841-010-9366-3 CrossRefGoogle Scholar
  47. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity—global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774PubMedCrossRefGoogle Scholar
  48. Schmid E (1961) Erläuterungen zur Vegetationskarte der Schweiz. Beiträge zur geobotanischen Landesaufnahme der Schweiz, vol 39. Huber, BernGoogle Scholar
  49. Speight M (1989) Saproxylic invertebrates and their conservation, vol 42. Nature and Environment, StrasbourgGoogle Scholar
  50. Swiss Forest Statistics (1912) Schweizerische Forststatistik. Eidgen. Oberforstinspektorat. Meier, ZürichGoogle Scholar
  51. Thirgood J (1989) Man’s impact on the forests of Europe. J World For Resour Manag 4:127–167Google Scholar
  52. Whitehead PF (1997) Beetle faunas of the European angiosperm Urwald: problems and complexities. Biologia 52(2):147–152Google Scholar
  53. Zimmermann NE, Kienast F (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10(4):469–482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thibault Lachat
    • 1
    • 2
    Email author
  • Klaus Ecker
    • 1
  • Peter Duelli
    • 1
  • Beat Wermelinger
    • 1
  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Swiss Biodiversity Forum, SCNATBernSwitzerland

Personalised recommendations