Journal of Insect Conservation

, Volume 17, Issue 4, pp 645–652 | Cite as

Predicting minimum area requirements of butterflies using life-history traits

  • Michel Baguette
  • Virginie Stevens
Original Paper


The minimum area requirement (MAR) of a species is the amount of functional habitat necessary for population persistence. The accurate measurement of MAR in the field usually requires long and precise investigations of all resources used by the target organism. Here we tested if MAR could be predicted by body size and species-specific life-history traits. Using values of MAR collected on European butterflies, we related MAR to 17 life-history traits plus wing size (a correlate of body size). We show that four life-history traits and wing size were significantly related with MAR in European butterflies. Compared to a model with wing size only, the inclusion of these four traits (myrmecophily, thermal tolerance, mate searching strategy, and ovigeny) more than doubled the power of the predictions of MAR. Our study provides a first step towards a predictive theory of species spatial requirements, with strong applications in conservation biology.


Body size Phylogeny Spatial requirement Resource dynamics Functional habitat 



We acknowledge funding from the EU FP7 SCALES project (“Securing the conservation of biodiversity across Administrative levels and spatial, temporal and Ecological Scales”; project no. 226852). This work is part of the “Laboratoire d’Excellence” (LABEX) entitled TULIP (ANR-10-LABX-41). We received very interesting comments from two reviewers that helped us to improve our manuscript.

Supplementary material

10841_2013_9548_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)


  1. Anderson DR, Burnham KP, White GC (1994) AIC model selection in overdispersed capture-recapture data. Ecology 75:1780–1793CrossRefGoogle Scholar
  2. Baguette M, Schtickzelle N (2006) Negative relationship between dispersal distances and demography in butterfly metapopulations. Ecology 87:648–654PubMedCrossRefGoogle Scholar
  3. Barton K (2012) MuMIn: multi-model inference R package version 166. http://CRANR-projectorg/package=MuMIn
  4. Biedermann R (2003) Body size and area-incidence relationships: is there a general pattern? Glob Ecol Biogeogr 12:381–387CrossRefGoogle Scholar
  5. Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noord-West Europa. Schuyt, Co., HaarlemGoogle Scholar
  6. Blake JG (1983) Trophic structure of bird communities in forest patches in east-central Illinois. Wilson Bull 95:416–430Google Scholar
  7. Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister MI (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28PubMedCrossRefGoogle Scholar
  8. Bowman J (2003) Is dispersal distance of birds proportional to territory size? Can J Zool 81:195–202Google Scholar
  9. Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055Google Scholar
  10. Brown JH, Marquet PA, Taper ML (1993) Evolution of body size: consequences on an energetic definition of fitness. Am Nat 142:573–584PubMedCrossRefGoogle Scholar
  11. Calder WA (1996) Size, function and life history. Dover, New YorkGoogle Scholar
  12. Cizek L, Fric Z, Konvicka M (2006) Host plant defences and voltinism in European butterflies. Ecol Entomol 31:337–344CrossRefGoogle Scholar
  13. Dennis R, Shreeve T, Van Dyck H (2003) Towards a resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426CrossRefGoogle Scholar
  14. Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74CrossRefGoogle Scholar
  15. Forman RTT, Galli AE, Leck CF (1976) Forest size and avian diversity in New Jersey woodlots with some land use implications. Oecologia 26:1–9CrossRefGoogle Scholar
  16. Galli AE, Leck CF, Forman RTT (1976) Avian distribution patterns in forest islands of different size in central New-Jersey. Auk 93:356–364Google Scholar
  17. Gilpin E, Soulé ME (1986) Minimum viable populations: processes of species extinction. In: Soulé M (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 19–34Google Scholar
  18. Grafen A (1989) The phylogenetic regression. Philos Trans R Soc B Biol Sci 326:119–157CrossRefGoogle Scholar
  19. Grömping U (2006) Relative importance for linear regression in R: the package relaimpo. J Stat Softw 17:1–27CrossRefGoogle Scholar
  20. Groves CR, Jenses DB, Valutis LL, Redford KH, Shaffer ML, Scott M, Baumgartner JV, Higgins JV, Beck MW, Anderson MG (2002) Planning for biodiversity conservation: putting conservation science into practice. Bioscience 52:499–512CrossRefGoogle Scholar
  21. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  22. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  23. Hanski I (2001) Spatially realistic theory of metapopulation ecology. Naturwissenchaften 81:372–381CrossRefGoogle Scholar
  24. Keogh JS, Scott IAW, Hayes C (2005) Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes. Evolution 59:226–233PubMedGoogle Scholar
  25. Koojman SALM (2000) Dynamic energy and mass budget in biological systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Lafranchis T (2004) Butterflies of Europe. Diatheo, ParisGoogle Scholar
  27. Lindeman RH, Merenda PF, Gold RZ (1980) Introduction to bivariate and multivariate analysis. Scott, Foresman and Co., GlenviewGoogle Scholar
  28. Lindstedt SL, Miller BJ, Buskirk SW (1986) Home range, time, and body size in mammals. Ecology 67:413–418Google Scholar
  29. McNab BK (1963) Bioenergetics and the determination of home range size. Am Nat 97:133–140CrossRefGoogle Scholar
  30. Mueller T, Fagan WF (2008) Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117:654–664CrossRefGoogle Scholar
  31. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N (2011) Caper: comparative analyses of phylogenetics and evolution in R R package version 04. http://CRANR-projectorg/package=caper
  32. Peters RH (1983) The ecological implications of body size. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Pianka ER (1974) Evolutionary ecology. Harper and Row, New YorkGoogle Scholar
  34. Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771PubMedCrossRefGoogle Scholar
  35. Reed DH, O’Grady JJ, Brook BW, Ballou JD, Frankham R (2003) Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biol Conserv 113:23–34CrossRefGoogle Scholar
  36. Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of body size and temperature on population growth. Am Nat 163:429–441PubMedCrossRefGoogle Scholar
  37. Sinervo B, Clobert J (2008) Life-history strategies, multidimensional trade-offs and behavioural syndromes. In: Danchin E, Giraldeau LA, Cezilly F (eds) Behavioural ecology, Oxford University Press, Oxford Google Scholar
  38. Stevens VM, Turlure C, Baguette M (2010a) A meta-analysis of dispersal in butterflies. Biol Rev 85:625–642PubMedGoogle Scholar
  39. Stevens VM, Pavoine S, Baguette M (2010b) Variation within and between closely related species uncovers high intra-specific variability in dispersal. PLoS One 5:e11123PubMedCrossRefGoogle Scholar
  40. Stevens VM, Trochet A, Van Dyck H, Clobert J, Baguette M (2012) How is dispersal integrated in life histories: a quantitative analysis using butterflies. Ecol Lett 15:74–86PubMedCrossRefGoogle Scholar
  41. Stevens VM, Trochet A, Blanchet S, Moulherat S, Clobert J, Baguette M (in press) Dispersal syndromes and the use of life-histories to predict dispersal. Evol ApplGoogle Scholar
  42. Tammaru T, Haukioja E (1996) Capital breeders and income breeders among lepidoptera: consequences to population dynamics. Oikos 77:571–574Google Scholar
  43. Thomas CD (1990) What do real population dynamics tell us about minimum viable population sizes? Conserv Biol 4:324–327CrossRefGoogle Scholar
  44. Traill LW, Bradshaw CJA, Brook BW (2007) Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol Conserv 139:159–166CrossRefGoogle Scholar
  45. Turlure C, Schtickzelle N, Van Dyck H, Baguette M (2009) Resource-based habitat definition, niche overlap and conservation of two sympatric glacial relict butterflies. Oikos 118:150–160CrossRefGoogle Scholar
  46. Turlure C, Choutt J, Van Dyck H, Baguette M, Schtickzelle N (2010) Functional habitat area as a reliable proxy for population size: case study using two butterfly species of conservation concern. J Insect Conserv 14:379–388CrossRefGoogle Scholar
  47. Vos CC, Verboom J, Opdam PFM, Ter Braak CJF (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41PubMedCrossRefGoogle Scholar
  48. Wenny DG, Clawson RL, Faaborg J, Sheriff SL (1993) Population density, habitat selection and minimum area requirement of three forest-interiors warblers in central Missouri. Condor 95:968–979CrossRefGoogle Scholar
  49. Wickman PO, Garcia-Barros E, Rappe-George C (1995) The location of landmark leks in the small heath butterfly, Coenonympha pamphilus: evidence against the hot-spot model. Behav Ecol 6:39–45CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut de Systématique, Evolution et BiodiversitéMuséum National d’Histoire Naturelle (MNHN), UMR 7205ParisFrance
  2. 2.CNRS, USR 2936 Station d’Ecologie Expérimentale du CNRS, Route du CNRSMoulisFrance

Personalised recommendations