Journal of Insect Conservation

, Volume 17, Issue 3, pp 431–440 | Cite as

Biogeographical patterns of variation in Western European populations of the great green bush-cricket (Tettigonia viridissima; Orthoptera Tettigoniidae)

  • E. M. Cooper
  • P. H. Lunt
  • J. S. Ellis
  • M. E. Knight


The great green bush-cricket, Tettigonia viridissima, is at the northern limits of its geographic distribution in the UK and has suffered a significant reduction in population abundance and range over the last 50 years, now being largely confined to the southern UK. This study uses five characters to investigate differences between UK and mainland Western European populations, questioning the possibility that UK populations might represent a distinct species or sub-species and thus deserve special conservation status. Males of T. viridissima from UK, France and Spain were compared using morphometry, flight, male calling song and analysis of mitochondrial DNA sequences. Results suggest morphological differences between UK population samples and continental Europe with the UK samples showing shorter wing length relative to body length than populations in continental Europe. Morphological differences between French and Spanish populations followed a size cline related to latitude with more southerly populations showing larger features. Analysis of male flight distances and calling song showed significant differences with increased flight distance and minimum stridulation following a southerly latitude which correlates with wing length results. No differences consistent with geographical distributions were found in mitochondrial DNA COI sequence alignments. Morphological differences could be due to developmental differences linked to differing temperature clines or a non-adaptive difference caused by the colonisation history of the species. The consequences of morphometric variation on flight function and stridulation in bush-crickets are discussed.


Bush-crickets Morphology Genetic divergence Flight Male calling European 


  1. Alexander RD (1968) Life cycles origins, speciation and related phenomena in crickets. Q Rev Biol 43:1–41PubMedCrossRefGoogle Scholar
  2. Arak A, Eiriksson T (1992) Choice of singing sites by male bushcrickets (Tettigonia viridissima) in relation to signal propagation. Behav Ecol Sociobiol 30:365–372CrossRefGoogle Scholar
  3. Armbruster P, Bradshaw WE, Holzapfel CM (1998) Effects of postglacial range expansion on allozyme and quantitative genetic variation of the pitcher-plant mosquito. Wyeomyia smithii. Evolution 52:1697–1704CrossRefGoogle Scholar
  4. Avise JC, Hamrick JL (1994) Conservation genetics: case histories from nature. Kluwer, MassachussettsGoogle Scholar
  5. Avise JC, Walker D, Johns GC (1998) Speciation durations and pleistocene effects on vertebrate phylogeography. Proc R Soc Lond B 265:1707–1712CrossRefGoogle Scholar
  6. Azivedo RBR, James AC, Mccabe J, Partridge L (1998) Latitudinal variation of wing: thorax size ratio and wing-aspect ratio in Drosophila melanogaster. Evolution 52:1353–1362CrossRefGoogle Scholar
  7. Blankenhorn WU, Fairbairn DJ (1995) Life history adaptation along a latitudinal cline in the water strider Aquarius remigis (Heteroptera: Gerridae). J Evol Biol 8:21–41CrossRefGoogle Scholar
  8. Butlin RK (1998) What do hybrid zones in general, and the Chorthippus parallelus zone in particular, tell us about speciation? In: Howard DJ, Berlocher S (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 367–378Google Scholar
  9. Chung WI (2001) The genic view of the process of speciation. J Evol Biol 14:851–865CrossRefGoogle Scholar
  10. Ciplak B (2004) Systematics, phylogeny and biogeography of Anterastes (Orthoptera, Tettigoniidae, Tettigoniinae): evolution within a refugium. Zool Scripta 33:19–44CrossRefGoogle Scholar
  11. Clegg SM, Degnan SM, Kikkawa J, Moritz C, Estoup A, Owens IPF (2002) Genetic consequences of sequential founder events by an island-colonizing bird. Proc Natl Acad Sci USA 99:8127–8132PubMedCrossRefGoogle Scholar
  12. Cooper E (2009) An investigation of factors affecting the distribution and anatomical variation of the Tettigonia viridissima (Tettigoniidae: Orthoptera). Dissertation, University of Plymouth, PlymouthGoogle Scholar
  13. Cooper SJB, Ibrahim KM, Hewitt GM (1995) Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Mol Ecol 4:49–60PubMedCrossRefGoogle Scholar
  14. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  15. Crouse J, Amorese D (1987) Ethanol precipitation: ammonium acetate as an alternative to sodium acetate. Focus 9(2):3–5Google Scholar
  16. Devon Biodiversity Action Plan (2005) Great green bush cricket Accessed 8th July 2011
  17. Dudley R (2002) The biomechanics of insect flight: form, function, evolution. Princeton University Press, PrincetonGoogle Scholar
  18. Duijm M (1990) On some song characteristics in Ephippiger (Orthoptera: Tettigonioidae) and their geographic variation. Neth J Zool 40:428–453CrossRefGoogle Scholar
  19. Duijm M, Oudman L (1983) Interspecific mating in Ephippiger (Orthoptera: Tettigonioidae). Tijdschr Entomol 126:97–108Google Scholar
  20. Dytham C (2003) Choosing and using statistics—a biologists guide, 2nd edn. Blackwell, OxfordGoogle Scholar
  21. Ellington CP (1984a) The aerodynamics of hovering insect flight. II. Morphological parameters. Philos Trans R Soc Lond B Biol Sci 305:17–40CrossRefGoogle Scholar
  22. Ellington CP (1984b) The aerodynamics of hovering insect flight. III. Kinematics. Philos Trans R Soc Lond B Biol 305:41–78CrossRefGoogle Scholar
  23. Ellington CP (1984c) The aerodynamics of hovering insect flight. VI. Lift and power requirements. Philos Trans R Soc Lond B Biol 305:145–181CrossRefGoogle Scholar
  24. Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298PubMedCrossRefGoogle Scholar
  25. Global Biodiversity Information Facility (2010) Occurrence overview map for Tettigonia viridissima. Accessed 8 July 2010
  26. Haes ECM, Harding PT (1997) Atlas of grasshoppers, crickets and allied insects in Britain and Ireland. Institute of Terrestrial Ecology, The Stationery Office, LondonGoogle Scholar
  27. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  28. Hartley JC, Warne AC (1984) Taxonomy of the Ephippiger ephippiger complex (ephippiger, cruciger and cunii) with special reference to the mechanics of copulation. Eos 60:43–54Google Scholar
  29. Hebert PDN, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321CrossRefGoogle Scholar
  30. Hewitt GM (1988) Hybrid zones—natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167PubMedCrossRefGoogle Scholar
  31. Hewitt GM (1989) The subdivision of species by hybrid zones. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer Associates, Sunderland, pp 85–110Google Scholar
  32. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276Google Scholar
  33. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  34. Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  35. Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Phil Trans R Soc Lond B Biol 359:183–195CrossRefGoogle Scholar
  36. Hillis DM, Moritz C, Mable BK (1996) Molecular systematics. Sinauer Associates, SunderlandGoogle Scholar
  37. Holst KT (1986) The Saltatoria (bush-crickets, Crickets and Grasshoppers) of Northern Europe. E.J. Brill/Scandinavian Science Press Ltd, CopenhagenGoogle Scholar
  38. Joost S, Bonin A, Bruford MW, Despres L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969PubMedCrossRefGoogle Scholar
  39. Lovette IJ (2005) Glacial cycles and the tempo of avian speciation. Trends Ecol Evol 20:57–59PubMedCrossRefGoogle Scholar
  40. Lunt DH, Ibrahim KM, Hewitt GM (1998) mt DNA phylogeography and postglacial patterns of subdivision in the Meadow Grasshopper Chorthippus parallelus. Heredity 80:633–641PubMedCrossRefGoogle Scholar
  41. Marshall JA, Haes ECM (1988) Grasshoppers and allied insects of Great Britain and Ireland. Harley Books, ColchesterGoogle Scholar
  42. Mazaki S, Sugahara T (1992) Photoperiodic control of larval development and wing form in Modicogryllus sp. (Orthoptera: Gryllidae)Google Scholar
  43. Merrick MJ, Smith RJ (2003) Temperature regulation in burying beetles (Nicrophorus spp.: Coleoptera: Silphidae): effects of body size, morphology and environmental temperature. J Exp Biol 207:723–733CrossRefGoogle Scholar
  44. Montealegre F, Jonsson T, Robert D (2011) Sound radiation and wing mechanics in stridulating field crickets (Orthoptera: Gryllidae). J Exp Biol 214:2105–2117CrossRefGoogle Scholar
  45. Moritz C (1994) Application of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3:401–411CrossRefGoogle Scholar
  46. Moulton MJ, Song H, Whiting MF (2010) DNA Barcoding assessing the effects of primer specificity on eliminating numt coamplification in DNA barcoding: a case study from Orthoptera (Arthropoda: Insecta). Mol Ecol Resour 10:615–627PubMedCrossRefGoogle Scholar
  47. Mousseau TA (1997) Ectotherms follow the converse to Bergmann’s Rule. Evolution 51:630–632CrossRefGoogle Scholar
  48. Mousseau TA, Roff DA (1989) Adaptation to seasonality in a cricket: patterns of phenotypic and genotypic variation in body size and diapause expression along a cline in season length. Evolution 43:1483–1496CrossRefGoogle Scholar
  49. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  50. Nijhout HF, Emlen J (1998) Competition among body parts in the development and evolution of insect morphology. Evolution 95:3685–3689Google Scholar
  51. Nylin S, Svard L (1991) Latitudinal patterns in the size of European butterflies. Hol Ecol 14:192–202Google Scholar
  52. Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma R(K), Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26(4):177–187PubMedCrossRefGoogle Scholar
  53. Oudman L, Landman W, Duijm W (1989) Genetic distance in the genus Ephippiger (Orthoptera: Tettigonioidae)—a reconnaissance. Tijdschr Entomol 132:177–181Google Scholar
  54. Oudman L, Duijm M, Landman W (1990) Morphological and allozyme variation in the Ephippiger ephippiger complex (Orthoptera: Tettigonioidae). Neth J Zool 40:454–483CrossRefGoogle Scholar
  55. Parajulee NM, Shrestha BR (2007) Morphometry of Lygus bugs: implications in pest management. Texas Agricultural Experiment Station, TexasGoogle Scholar
  56. Pettersson L (1999) BatSound. Real-time spectrogram sound analysis software for Windows 95. Pettersson Elektronik AB, Uppsala: SwedenGoogle Scholar
  57. Reed SC, Williams CM, Chadwick LE (1942) Frequency of wing-beat as a character for separating species races and geographic varieties of Drosophila. Genetics 27:349–361PubMedGoogle Scholar
  58. Riede K (1998) Acoustic monitoring of orthoptera and its potential for conservation. J Insect Conserv 2(3–4):217–223CrossRefGoogle Scholar
  59. Ritchie MG (2000) The inheritance of female preference functions in a mate recognition system. Proc R Soc Lond B 267:327–332CrossRefGoogle Scholar
  60. Ritchie MG, Kidd DM, Gleason JM (2001) Mitochondrial DNA variation and GIS analysis confirm a secondary origin of geographical variation in the bushcricket Ephippiger ephippiger (Orthoptera: Tettigonioidea), and resurrect two subspecies. Mol Ecol 10:603–611PubMedCrossRefGoogle Scholar
  61. Rubinoff D (2005) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20(4):1026–1033CrossRefGoogle Scholar
  62. Saldamando CI, Miyaguchi S, Tatsuta H, Kishino H, Bridle JR, Butlin RK (2005) Inheritance of song and stridulatory peg number divergence between Chorthippus brunneus and C. jacobsi, two naturally hybridizing grasshopper species (Orthoptera: Acrididae). J Exp Biol 18(3):703–712Google Scholar
  63. Schuch S, Bock J, Leuschner C, Schaefer M, Wesche K (2011) Minor changes in orthopteran assemblages of Central European protected dry grasslands during the last 40 years. J Insect Conserv. doi: 10.1007/s10841-011-9379-6
  64. Schul J, Von Helverson D, Weber T (1998) Selective phonotaxix in Tettigonia cantans and T. viridissima in song recognition and discrimination. J Comp Physiol A 182:687–694CrossRefGoogle Scholar
  65. Seenivasagan T, Sharma KR, Shrivastava A, Parashar BD, Pant SC, Prakash S (2009) Surface morphology and morphometric analysis of sensilla of Asian tiger mosquito. Aedes albopictus (Skuse): an SEM investigation. J Vector Borne Dis 46:125–135PubMedGoogle Scholar
  66. Sheffield NC, Hiatt KD, Valentine MC, Song H, Whiting MF (2010) Mitochondrial genomics in Orthoptera using MOSAS. Mitochondrial DNA 21(3–4):87–104PubMedCrossRefGoogle Scholar
  67. Spooner LJ, Ritchie MG (2006) An unusual phylogeography in the bushcricket Ephippiger ephippiger from southern France. Heredity 97:398–408PubMedCrossRefGoogle Scholar
  68. Taberlet P, Fumagalli L, Wust-Saucy A, Cosson J (1998) Comparative phylogeography and postglacial colonisation routes in Europe. Mol Ecol 7:453–464PubMedCrossRefGoogle Scholar
  69. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  70. Telfer MG, Hassall M (1999) Ecotypic differentiation in the grasshopper Chorthippus brunneus: life history varies in relation to climate. Oecologia 121:245–254CrossRefGoogle Scholar
  71. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680PubMedCrossRefGoogle Scholar
  72. Tregenza T, Pritchard VL, Butlin RK (2000) Patterns of trait divergence between populations of the Meadow Grasshopper Chorthippus Parallelus. Evolution 54(2):574–585PubMedGoogle Scholar
  73. Tregenza T, Pritchard VL, Butlin RK (2002) The origins of postmating reproductive isolation: testing hypotheses in the grasshopper Chorthippus parellus. Popul Ecol 44:137–144CrossRefGoogle Scholar
  74. Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species Act. Mar Fish Rev 53:11–22Google Scholar
  75. Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J Evol Biol 59:169–230Google Scholar
  76. Wiens JJ (2004) The role of morphological data in phylogeny reconstruction. Syst Biol 53:653–661PubMedCrossRefGoogle Scholar
  77. Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists. Elsevier, LondonGoogle Scholar
  78. Zhou Z, Huang Y, Shi F, Ye H (2009) The complete mitochondrial genome of Deracantha onos (Orthoptera: Bradyporidae). Mol Biol Rep 36:7–12PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • E. M. Cooper
    • 1
  • P. H. Lunt
    • 1
  • J. S. Ellis
    • 2
  • M. E. Knight
    • 3
  1. 1.School of Geography, Earth and Environmental SciencesPlymouth UniversityPlymouthUK
  2. 2.School of Science and the EnvironmentManchester Metropolitan UniversityManchesterUK
  3. 3.School of Biomedical and Biological SciencesPlymouth UniversityPlymouthUK

Personalised recommendations