Journal of Insect Conservation

, Volume 16, Issue 2, pp 305–313 | Cite as

Phylogeography of the threatened butterfly, the woodland brown Lopinga achine (Nymphalidae: Satyrinae): implications for conservation

  • Ullasa Kodandaramaiah
  • Martin Konvicka
  • Toomas Tammaru
  • Niklas Wahlberg
  • Karl Gotthard
SHORT COMMUNICATION

Abstract

We have studied the phylogeography of the red-listed Palearctic butterfly Lopinga achine (Nymphalidae: Satyrinae) based on 1,450 base pairs of mitochondrial DNA sequences from 86 individuals representing 12 populations. Our results indicate a strong structuring of genetic variation, with among-population differences accounting for ca. 67% of the variation and almost all populations being significantly differentiated from each other. We surmise that the insular nature of populations as well as the low dispersal ability of the species has given rise to such a pattern. The genetic diversity within populations is low compared to that in other butterflies. Our results point to a scenario where the species originated in the Eastern Palearctic and expanded into Europe. Based on the analyses, we suggest that the Czech population merits the highest conservation priority. The two Swedish populations represent a distinct evolutionary lineage, and hence merit high conservation attention. The Estonian and Asian populations had the highest genetic diversity, and although we do not consider them to be under immediate threat, their genetic diversity should be conserved in the long term.

Keywords

Lopinga achine Phylogeography Conservation Red-list 

References

  1. Bergman K (1999) Habitat utilization by Lopinga achine (Nymphalidae: Satyrinae) larvae and ovipositing females: implications for conservation. Biol Conserv 88:69–74CrossRefGoogle Scholar
  2. Bergman K (2000) Oviposition, host plant choice and survival of a grass feeding butterfly, the Woodland Brown (Lopinga achine) (Nymphalidae: Satyrinae). J Res Lep 35:9–21Google Scholar
  3. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  4. Dennis RLH, Schmitt T (2009) Faunal structures, phylogeography and historical inference, in: ccology of butterflies in Europe. Cambridge University Press, Cambridge, pp 250–258Google Scholar
  5. Donnelly P, Tavaré S (1986) The ages of alleles and a coalescent. Adv Appl Prob 18:1–19CrossRefGoogle Scholar
  6. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA Haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  7. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformat Online 1:47–50Google Scholar
  8. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  9. Goudet J, Raymond M, de-Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940PubMedGoogle Scholar
  10. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  11. Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474PubMedCrossRefGoogle Scholar
  12. Heath J (1981) Threatened Rhopalocera (Butterflies) in Europe. Nature and environment series no. 23. Council of Europe Publishing, StrasbourgGoogle Scholar
  13. Joyce DA, Pullin AS (2001) Phylogeography of the marsh fritillary Euphydryas aurinia (Lepidoptera: Nymphalidae) in the UK. Biol J Linn Soc 72:129–141CrossRefGoogle Scholar
  14. Kodandaramaiah U, Wahlberg N (2007) Out-of-Africa origin and dispersal mediated diversification of the butterfly genus Junonia (Nymphalidae: Nymphalinae). J Evol Biol 20:2181–2191PubMedCrossRefGoogle Scholar
  15. Konvicka M, Novak J, Benes J, Fric Z, Bradley J, Keil P, Hrcek J, Chobot K, Marhoul P (2008) The last population of the Woodland Brown butterfly (Lopinga achine) in the Czech Republic: habitat use, demography and site management. J Insect Conserv 12:549–560CrossRefGoogle Scholar
  16. Kralicek M, Gottwald A (1984) Motyli jihovychodni Moravy I [butterflies of Southeast Moravia I]. Okresni Museum and OV CSOP, Uhersky Brod and Uherske HradisteGoogle Scholar
  17. Kudrna O (2002) The distribution atlas of European butterflies. Oedippus 20:1–342Google Scholar
  18. Kullingsjö, O (2006) Inventering av Dårgräsfjäril 2006. [in swedish], Rapporter om natur och miljö - nr 2006: 11. Länsstyrelsen i Gotlands län, Visby, SwedenGoogle Scholar
  19. Lepidopterologen-Arbeitsgruppe (1987) Tagfalter und ihre Lebensräume. Schweizerischer Bund für Naturschutz, BaselGoogle Scholar
  20. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  21. Piirainen T, Järventausta K, Martikainen R, Turja S (2009) Kirjopapurikon esiintyminen Pirkanmaalla [in Finnish: the occurrence of Lopinga achine in Pirkanmaa]. Diamina 2009:12–18Google Scholar
  22. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  23. Schmitt T, Hewitt GM (2004) The genetic pattern of population threat and loss: a case study of butterflies. Mol Ecol 13:21–31PubMedCrossRefGoogle Scholar
  24. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V et al (2004) Late quaternary ice sheet history of Eurasia. Quatern Sci Rev 23:1229–1271CrossRefGoogle Scholar
  25. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedGoogle Scholar
  26. Tiffney BH (1985) The Eocene North Atlantic land bridge: its importance in tertiary and modern phytogeography of the Northern Hemisphere. J Arnold Arbor 66:243–273Google Scholar
  27. Tolman T, Lewington R (1997) Butterflies of Britain and Europe. HarperCollins Publishers, LondonGoogle Scholar
  28. Tuzov VK (2000) Guide to the butterflies of Russia and adjacent territories, vol 2. Pensoft, SofiaGoogle Scholar
  29. van Helsdingen PJ, Willemse L, Speight MCD (1996) Background information on invertebrates of the habitats directive and the Bern convention. Part 1: crustacea, coleoptera and lepidoptera. Council of Europe. Nature and environment series no. 79. Council of Europe Publishing, StrasbourgGoogle Scholar
  30. van Swaay CAM, Maes D, Warren MS (2009) Conservation status of European butterflies. In: Settele J, Konvicka M, Shreeve TG, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 322–338Google Scholar
  31. Vandewoestijne S, Baguette M, Brakefield PM, Saccheri IJ (2004) Phylogeography of Aglais urticae (Lepidoptera) based on DNA sequences of the mitochondrial COI gene and control region. Mol Phylogenet Evol 31:630–646PubMedCrossRefGoogle Scholar
  32. Wahlberg N, Saccheri I (2007) The effects of Pleistocene glaciations on the phylogeography of Melitaea cinxia (Lepidoptera: Nymphalidae). Eur J Entomol 104:675–684Google Scholar
  33. Weidemann HJ (1995) Tagfalter beobachten, bestimmen. Naturbuch, VerlagGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ullasa Kodandaramaiah
    • 1
    • 5
  • Martin Konvicka
    • 2
  • Toomas Tammaru
    • 3
  • Niklas Wahlberg
    • 4
  • Karl Gotthard
    • 1
  1. 1.Department of ZoologyStockholm UniversityStockholmSweden
  2. 2.Institute of EntomologyCzech Academy of SciencesCeske BudejoviceCzech Republic
  3. 3.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  4. 4.Laboratory of Genetics, Department of BiologyUniversity of TurkuTurkuFinland
  5. 5.Department of ZoologyUniversity of CambridgeCambridgeUK

Personalised recommendations