Journal of Insect Conservation

, Volume 16, Issue 5, pp 709–721 | Cite as

Habitat and host plant use of the Large Copper Butterfly Lycaena dispar in an urban environment

  • Martin Strausz
  • Konrad Fiedler
  • Markus Franzén
  • Martin Wiemers
ORIGINAL PAPER

Abstract

The Large Copper (Lycaena dispar) has been extensively studied due to its high conservation priority. The species has declined severely in North-West Europe, but is currently expanding in Central and North-East Europe. In this study, we investigated egg deposition patterns at three different spatial scales (site, plant, and leaf level) for L. dispar at 23 sites within the municipality of Vienna (Austria). In one season, a total of 2,457 eggs were counted on six Rumex species, of which two (R. stenophyllus, R. patientia) represent novel host plant records. Rumex crispus harboured 87.6% of all egg counts and was significantly preferred (4.4 eggs per plant) over the second-ranked R. obtusifolius for oviposition (1.1 eggs per plant). At the habitat scale, eggs were observed at all study sites. Egg numbers per site were equal across landscape zones, including stretches of waste land in urban habitats, except for lower egg numbers on meadows at the margin of the Vienna forest. Mowing was negatively related to the number of eggs found on all three studied scales. We conclude that L. dispar eggs are easier to find compared to adult butterflies, the butterfly can utilize more host plant species than what was previously known, and that mowing has a strong negative influence on the local butterfly populations. Urban wastelands provide important habitats, in which the species can sustain substantial population densities which are in comparison to those in the countryside. Conservation action should focus on applying less intensive rotational mowing, preferably involving mowing of suitable sites every 2 years.

Keywords

Climate change Indicator species Occurrence pattern Range shift Urban ecology Vienna 

References

  1. Adler W, Mrkvicka C (2003) Die Flora Wiens gestern und heute. Verlag des Naturhistorischen Museums Wien, WienGoogle Scholar
  2. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure—the key for successful management of pre-alpine Euphydrias aurinia colonies. J Insect Conserv 7:175–185. doi:10.1023/A:1027330422958 Google Scholar
  3. Árnyas E, Bereczki J, Tóth A, Pecsenye K, Varga Z (2006) Egg-laying preferences of the xerophilous ecotype of Maculinea alcon (Lepidoptera: Lycaenidae) in the Aggtelek National Park. Eur J Entomol 103:587–595Google Scholar
  4. Auer I, Böhm R, Mohnl H (1989) Klima von Wien. Magistrat der Stadt Wien, Geschäftsgruppe Stadtentwicklung, Stadtplanung und Personal, Geschäftsgruppe Umwelt, Freizeit und Sport, WienGoogle Scholar
  5. Batáry P, Örvössy N, Kőrösi Á, Peregovits L (2008) Egg distribution of the Southern Festoon (Zerynthia polyxena) (Lepidoptera, Papilionidae). Acta Zool Acad Sci Hun 54:401–410Google Scholar
  6. Bauerfeind SS, Thiesen A, Fischer K (2009) Patch occupancy in the endangered butterfly Lycaena helle in a fragmented landscape: effects of habitat quality, patch size and isolation. J Insect Conserv 13:271–277. doi:10.1007/s10841-008-9166-1 Google Scholar
  7. Berger R, Ehrendorfer F (2010) Ökosystem Wien. Die Naturgeschichte einer Stadt. Wiener Umweltstudien, vol 2. Böhlau Verlag, WienGoogle Scholar
  8. Bergman KO (2000) Oviposition, host plant choice and survival of a grass feeding butterfly, the Woodland Brown (Lopinga achine) (Nymphalidae: Satyrinae). J Res Lepid 35:9–21Google Scholar
  9. Bergström A (2005) Oviposition site preferences of the threatened butterfly Parnassius mnemosyne—implications for conservation. J Insect Conserv 9:21–27. doi:10.1007/s10841-004-3204-4 Google Scholar
  10. Bink FA (1986) Acid stress in Rumex hydrolapathum (Polygonaceae) and its influence on the phytophage Lycaena dispar (Lepidoptera; Lycaenidae). Oecologia 70:447–451. doi:10.1007/BF00379510
  11. Bink FA (1996) Lycaena dispar Haworth, 1803. In: Helsdingen PJ, Willemse L, Speight MCD (eds) Background information on invertebrates of the habitats directive and the Bern convention, vol 79. Nature and environment. Council of Europe, Strasbourg, pp 150–156Google Scholar
  12. Bowers MD, Stamp NE, Collinge SK (1992) Early stage of host range expansion by a specialist herbivore, Euphydryas phaeton (Nymphalidae). Ecology 73:526–536CrossRefGoogle Scholar
  13. Dennis RLH (1995) Euchloe ausonia (Hübner) (Lepidoptera: Pieridae) oviposition on Brassica nigra (L.) Koch (Cruciferae): big immature plants are preferred. Entomol Gazette 46:253–255Google Scholar
  14. Dennis RLH (1996) Oviposition in Zerynthia cretica (Rebel, 1904): loading on leaves, shoots and plant patches (Lepidoptera, Papilionidae). Nota lepid 18:3–15Google Scholar
  15. Dennis RLH (2004) Butterfly habitats, broad scale biotope affiliations and structural exploitation of vegetation at finer scales: the matrix revisited. Ecol Entomol 29:744–752. doi:10.1111/j.0307-6946.2004.00646.x Google Scholar
  16. Dennis RLH (2010) A resource-based habitat view for conservation. Wiley, OxfordCrossRefGoogle Scholar
  17. Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13:3–27. doi:10.1007/s10841-008-9135-8 CrossRefGoogle Scholar
  18. Duffey E (1968) Ecological studies on the Large Copper Butterfly Lycaena dispar HAW. batavus OBTH. at Woodwalton Fen national nature reserve, Huntingdonshire. J Appl Ecol 5:69–96CrossRefGoogle Scholar
  19. Ebert G (ed) (1993) Schmetterlinge Baden-Württembergs. Band 2—Tagfalter II, 2nd edn. Eugen Ulmer, StuttgartGoogle Scholar
  20. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  21. Eichel S, Fartmann T (2008) Management of calcareous grassland for Nickerl`s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12:677–688. doi:10.1007/s10841-007-9110-9 Google Scholar
  22. Erhardt A (1985) Diurnal Lepidoptera: sensitive indicators of cultivated and abandoned grassland. J Appl Ecol 22:849–861CrossRefGoogle Scholar
  23. Fartmann T (2006) Oviposition preferences, adjacencies of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in Central Germany. Ann Zool Fenn 43:335–347Google Scholar
  24. Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa—von den Anfängen bis heute. In: Fartmann T, Hermann G (ed) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abhandl Westf Mus Naturkde 68:11–57Google Scholar
  25. Fartmann T, Timmermann K (2006) Where to find eggs and how to manage the breeding sites of the Brown Hairstreak (Thecla betulae (Linnaeus, 1758)) in Central Europe? Nota lepid 29:117–126Google Scholar
  26. Fischer K, Fiedler K (2001) Effects of adult feeding and temperature regime on fecundity and longevity in the butterfly Lycaena hippothoe (Lycaenidae). J Lepid Soc 54:91–95Google Scholar
  27. Fischer K, Fiedler K (2002) Reaction norms for age and size at maturity in response to temperature: a test of the compound interest hypothesis. Evol Ecol 16:333–349. doi:10.1023/A:1020271600025 Google Scholar
  28. Freese A, Benes J, Bolz R, Cizek O, Dolek M, Geyer A, Gros P, Konvicka M, Liegl A, Stettmer C (2006) Habitat use of the endangered butterfly Euphydryas maturna and forestry in Central Europe. Anim Conserv 9:388–397. doi:10.1111/j.1469-1795.2006.00045.x
  29. Gepp J (2001) Entomologische Relevanz der Fauna-Flora-Habitat-Richtlinie der Europäischen Union (entomological relevance of the habitat directive of the European Union). Entomol Austriaca 1:7–10Google Scholar
  30. Herbst H (2003) The importance of wastelands as urban wildlife areas—with particular reference to the cities Leipzig and Birmingham. UFZ-Bericht—Stadtökologische Forschungen Nr. 35, vol 2. UFZ, LeipzigGoogle Scholar
  31. Hermann G, Steiner R (1998) Eiablagehabitat und Verbreitung des Violetten Feuerfalters (Lycaena alciphron) in Baden-Württemberg (Lepidoptera, Lycaenidae). Carolinea 56:99–102Google Scholar
  32. Höttinger H (2004) Grundlagen zum Schutz von Tagschmetterlingen in Städten. Oedippus 22:1–48Google Scholar
  33. Höttinger H, Pennerstorfer J (2005) Rote Liste der Tagschmetterlinge Österreichs (Lepidoptera: Papilionoidea and Hesperioidea). In: Zulka KP (ed) Rote Listen gefährdeter Tiere Österreichs. Checklisten, Gefährdungsanalysen, Handlungsbedarf, vol Teil I. Grüne Reihe des Lebensministeriums, vol 14(1). pp 313–354Google Scholar
  34. Janz N (2011) Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu Rev Ecol Evol Syst 42:71–89. doi:10.1146/annurev-ecolsys-102710-145024
  35. Janz N, Bergström A, Sjörgen A (2005) The role of nectar sources for oviposition decisions of the common blue butterfly Polyommatus icarus. Oikos 109:535–538. doi:10.1111/j.0030-1299.2005.13817.x Google Scholar
  36. Johst K, Drechsler M, Thomas J, Settele J (2006) Influence of mowing on the persistence of two endangered large blue butterfly species. J Appl Ecol 43:333–342. doi:10.1111/j.1365-2664.2006.01125.x Google Scholar
  37. Krauss J, Dewenter IS, Tscharntke T (2004) Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol Conserv 120:355–361. doi:10.1016/j.biocon.2004.03.007
  38. Krauss J, Dewenter IS, Müller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28:465–474. doi:10.1111/j.0906-7590.2005.04201.x Google Scholar
  39. Kruess A (2002) Indirect interaction between a fungal plant pathogen and a herbivorous beetle of the weed Cirsium arvense. Oecologia 130:563–569. doi:10.1007/s00442-001-0829-9 Google Scholar
  40. Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz, HalleGoogle Scholar
  41. Küer A, Fartmann T (2005) Prominent shoots are preferred: microhabitat preferences of Maculinea alcon ([Denis & Schiffermüller], 1775) in Northern Germany (Lycaenidae). Nota lepid 27:309–319Google Scholar
  42. Kühne L, Haase E, Wachlin V, Gelbrecht J, Dommain R (2001) Die FFH-Art Lycaena dispar—Ökologie, Verbreitung, Gefährdung und Schutz im norddeutschen Tiefland (Lepidoptera, Lycaenidae). Märkische Entomol Nachr 3:1–32Google Scholar
  43. Lafranchis T, Heaulmé V, Lafranchis J (2001) Biologie, écologie et répartition du Cuivré des marais (Lycaena dispar Haworth, 1803) en Quercy (sud-ouest de la France) (Lepidoptera: Lycaenidae). Linn belg 18:27–36Google Scholar
  44. Lai BG, Pullin AS (2004) Phylogeography, genetic diversity and conservation of the Large Copper Butterfly Lycaena dispar in Europe. J Insect Conserv 8:27–35. doi:10.1023/B:JICO.0000027478.35309.46
  45. Liu W, Wang Y, Xu R (2006) Habitat utilization by ovipositing females and larvae of the Marsh fritillary (Euphydryas aurinia) in a mosaic of meadows and corplands. J Insect Conserv 10:351–360. doi:10.1007/s10841-006-9009-x Google Scholar
  46. Loritz H, Settele J (2006) Eiablageverhalten des Großen Feuerfalters (Lycaena dispar) in SW-Deutschland—Wirtspflanzenwahl, Generationenvergleich und Hinweise zur Erfassung. In: Fartmann T, Hermann G (ed) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abhandl Westf Mus Naturkde 68:243–255Google Scholar
  47. Martin LA, Pullin AS (2004a) Host-plant specialisation and habitat restriction in an endangered insect, Lycaena dispar batavus I. Larval feeding and oviposition preferences. Eur J Entomol 101:51–56Google Scholar
  48. Martin LA, Pullin AS (2004b) Host-plant specialisation and habitat restriction in an endangered insect, Lycaena dispar batavus II. Larval survival on alternative host plants in the field. Eur J Entomol 101:57–62Google Scholar
  49. McKay HV (1991) Egg-laying requirements of woodland butterflies; brimstones (Gonepteryx rhamni) and alder buckthorn (Frangula alnus). J Appl Ecol 28:731–743CrossRefGoogle Scholar
  50. Murphy DD, Menninger MS, Ehrlich PR (1984) Nectar source distribution as a determinant of oviposition host species in Euphydryas chalcedona. Oecologia 62:269–271. doi:10.1007/BF00379025 Google Scholar
  51. Nicholls CN, Pullin AS (2000) A comparison of larval survivorship in wild and introduced populations of the Large Copper Butterfly (Lycaena dispar batavus). Biol Conserv 93:349–358. doi:10.1016/S0006-3207(99)00134-2 Google Scholar
  52. Nicholls CN, Pullin AS (2003) The effects of flooding on survivorship in overwintering larvae of the Large Copper Butterfly Lycaena dispar batavus, and its possible implications for restoration management. Eur J Entomol 100:65–72Google Scholar
  53. Öckinger E, Bergman K-O, Franzén M, Kadlec T, Krauss J, Kuussaari M, Pöyry J, Smith H, Steffan-Dewenter I, Bommarco R (2012) The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape Ecol 27:121–131. doi:10.1007/s10980-011-9686-z CrossRefGoogle Scholar
  54. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286 Google Scholar
  55. Pretscher P (1998) Rote Liste der Großschmetterlinge (Macrolepidoptera). In: Binot M, Bless R, Boye P, Gruttke H, Pretscher P (eds) Rote Liste gefährdeter Tiere Deutschlands. Schriftenreihe für Landschaftspflege und Naturschutz vol 55. pp 87–111Google Scholar
  56. Pullin AS (1997) Habitat requirements of Lycaena dispar batavus and implications for re-establishment in England. J Insect Conserv 1:177–185. doi:10.1023/A:1018407831717
  57. Pullin AS, Bálint Z, Balletto E, Jaroslav B, Coutsis JG, Goffart P, Kulfan M, Lhonoré JE, Settele J, Van der Made JG (1998) The status, ecology and conservation of Lycaena dispar (Lycaenidae: Lycaenini) in Europe. Nota lepid 21:94–100Google Scholar
  58. Rabasa SG, Gutiérrez D, Escudero A (2005) Egg laying by a butterfly on a fragmented host plant: a multi-level approach. Ecography 28:629–639. doi:10.1111/j.2005.0906-7590.04229.x Google Scholar
  59. Reichl ER (1992) Verbreitungsatlas der Tierwelt Österreichs. Band 1. Lepidoptera—Diurna. Tagfalter. Forschungsinstitut für Umweltinformatik, LinzGoogle Scholar
  60. Saarinen K (2010) National butterfly recording scheme in Finland (NAFI): summary for 2010. Baptria 35:100–110Google Scholar
  61. SBN (ed) (1987) Tagfalter und ihre Lebensräume. Arten, Gefährdung, Schutz. BaselGoogle Scholar
  62. Settele J, Feldmann R, Reinhardt R (eds) (2000) Die Tagfalter Deutschlands. Eugen Ulmer, StuttgartGoogle Scholar
  63. Settele J, Kudrna O, Harpke A, Kühn I, Swaay C, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kühn E, Halder I, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic risk atlas of European Butterflies. BioRisk 1:1–710. doi:10.3897/biorisk.1
  64. Shreeve TG (1986) Egg-laying by the speckled wood butterfly (Pararge aegeria): the role of female behaviour, host plant abundance and temperature. Ecol Entomol 11:229–236. doi:10.1111/j.1365-2311.1986.tb00298.x Google Scholar
  65. Shreeve TG, Dennis RLH (2011) Landscape scale conservation: resources, behaviour, the matrix and opportunities. J Insect Conserv 15:179–188. doi:10.1007/s10841-010-9336-9 Google Scholar
  66. Stefanescu C, Penuelas J, Sardans J, Fillela I (2006) Females of the specialist butterfly Euphydrias aurinia (Lepidoptera: Nymphalinae: Melitaeini) select the greenest leaves of Lonicera implexa (Caprifoliaceae) for oviposition. Eur J Entomol 103:569–574Google Scholar
  67. Tabashnik BE (1983) Host range evolution: the shift from native legume hosts to alfalfa by the butterfly, Colias philodice eriphyle. Evolution 37:150–162CrossRefGoogle Scholar
  68. Talsma JHR, Torri K, van Nouhuys S (2008) Host plant use by the heath fritillary butterfly, Melitaea athalia: plant habitat, species and chemistry. Arthropod Plant Interact 2:63–75. doi:10.1007/s11829-008-9039-2
  69. Thomas JA (1984) The conservation of butterflies in temperate countries: past efforts and lessons for the future. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic Press, London, pp 333–353Google Scholar
  70. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121 PubMedCrossRefGoogle Scholar
  71. Thompson JN, Pellmayr O (1991) Evolution of oviposition behaviour and host preference in Lepidoptera. Annu Rev Entomol 36:65–89CrossRefGoogle Scholar
  72. Van Swaay C, Cuttelod A, Collins S, Maes D, López Munguira ML, Šašić M, Settele J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhoff I (2010a) European red list of butterflies. Publications Office of the European Union, LuxembourgGoogle Scholar
  73. Van Swaay CAM, Collins S, Dusej G, Maes D, Munguira ML, Rakosy L, Ryrholm N, Šašić M, Settele J, Thomas J, Verovnik R, Verstrael T, Warren MS, Wiemers M, Wynhoff I (2010b) Do’s and don’ts for butterflies of the habitats directive. Butterfly Conservation Europe & De Vlinderstichting, WageningenGoogle Scholar
  74. Vasconcellos-Neto J, Ferreira Monteiro R (1993) Inspection and evaluation of host plant by the butterfly Mechanitis lysimnia (Nymph. Ithomiinae) before laying eggs: a mechanism to reduce intraspecific competition. Oecologia 95:431–438. doi:10.1007/BF00320999 Google Scholar
  75. Webb MR, Pullin AS (1996) Larval survival in populations of the Large Copper Butterfly Lycaena dispar batavus. Ecography 19:276–286. doi:10.1111/j.1600-0587.1996.tb00237.x Google Scholar
  76. Webb MR, Pullin AS (2000) Egg distribution in the Large Copper Butterfly Lycaena dispar batavus: Host plant versus habitat mediated effects. Eur J Entomol 97:363–367Google Scholar
  77. Werner F, Möller J (2003) Der Große Feuerfalter (Lycaena dispar) im Nationalpark Unteres Odertal—Untersuchungen zur Habitateignung von ausgewählten Probeflächen. Beiträge zur Forstwirtschaft und Landschaftsökologie 37:40–43Google Scholar
  78. Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia 63:23–29. doi:10.1007/BF00379780 Google Scholar
  79. Wiklund C, Friberg M (2008) Enemy-free space and habitat-specific host specialization in a butterfly. Oecologia 157:287–294. doi:10.1007/s00442-008-1077-z Google Scholar
  80. Williams KS (1983) The coevolution of Euphydryas chalcedona butterflies and their larval host plants. III. Oviposition behavior and host plant quality. Oecologia 56:336–340. doi:10.1007/BF00379709 Google Scholar
  81. Zahner A (1994) Verbreitung und Habitatpräferenz der Erdläufer in der Großstadt Wien (Chilopoda: Geophilomorpha). Vienna University, WienGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Martin Strausz
    • 1
  • Konrad Fiedler
    • 1
  • Markus Franzén
    • 2
  • Martin Wiemers
    • 1
    • 2
  1. 1.Department of Tropical Ecology and Animal BiodiversityUniversity of ViennaViennaAustria
  2. 2.Department of Community EcologyHelmholtz Centre for Environmental Research (UFZ)HalleGermany

Personalised recommendations