Advertisement

Journal of Insect Conservation

, Volume 16, Issue 4, pp 501–510 | Cite as

Conservation management of coastal dunes for Orthoptera has to consider oviposition and nymphal preferences

  • Yvonne Wünsch
  • Jens Schirmel
  • Thomas Fartmann
ORIGINAL PAPER

Abstract

Dune and heathland ecosystems can harbour a multitude of specialized insect species. To assess the habitat quality of these ecosystems, the presence of specialized insect species may act as a useful indicator. The Orthoptera species Myrmeleotettix maculatus, Decticus verrucivorus, and Platycleis albopunctata present such umbrella species. Because knowledge of oviposition and nymphal habitats of these species is insufficient, we conducted a combined study consisting of an outdoor oviposition experiment and a field survey analyzing nymphal habitat preferences during summer 2009 on the Baltic island of Hiddensee, Germany. The oviposition experiment showed, that all three species mostly avoid oviposition under lichens (= mature grey dunes). M. maculatus preferred bare ground for oviposition, D. verrucivorus favoured both bare ground and mosses, and P. albopunctata laid most eggs into mosses. Young nymphs of both M. maculatus and P. albopunctata preferred initial grey dunes with a high proportion of bare ground and moss-rich grey dunes. Old nymphs were related to moss-rich and lichen-rich grey dunes with more dense vegetation. Based on our results, early seral stages of dune succession with bare ground and mosses as keystone structures are crucial for the conservation of the three studied umbrella species. Because old nymphs and adults additionally require more dense grey dune vegetation or adjacent heath stands, practical dune and heathland management measures should aim to maintain a mosaic-like pattern of different grey dune and dwarf-shrub vegetation stands.

Keywords

Caelifera Ensifera Grasshopper Habitat requirement Heathland 

Notes

Acknowledgments

The authors thank the national park “Vorpommersche Boddenlandschaft” for the permission to conduct the study in the protected area. We are grateful to Wolfgang Zenke (Biological Station Hiddensee) for providing assistance in the construction and the realization of the oviposition experiment. Sascha Buchholz and two anonymous reviewers gave helpful comments on an earlier version of the manuscript. The study was financially supported by the Bauer-Hollmann-Stiftung and was part of the research project “Biodiversity, Ecology and Management of Coastal Habitats of the Baltic Sea”.

References

  1. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure–the key for successful management of pre-alpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185CrossRefGoogle Scholar
  2. Báldi A, Kisbenedek T (1997) Orthopteran assemblages as indicators of grassland naturalness in Hungary. Agric Ecosys Environ 66:121–129CrossRefGoogle Scholar
  3. Bellmann H (2006) Der Kosmos Heuschreckenführer: Die Arten Mitteleuropas sicher bestimmen. Kosmos, StuttgartGoogle Scholar
  4. Bonte D, Criel P, Van Thournout I, Maelfait JP (2003) Regional and local variation of spider assemblages (Araneae) from coastal grey dunes along the North Sea. J Biogeogr 30:901–911CrossRefGoogle Scholar
  5. Cherrill AJ, Brown VK (1990a) The habitat requirements of adults of the Wart-biter D. verrucivorus (L.) (Orthoptera: Tettigoniidae) in Southern England. Biol Conserv 53:145–157CrossRefGoogle Scholar
  6. Cherrill AJ, Brown VK (1990b) The life cycle and distribution of the Wart-biter D. verrucivorus (L.) (Orthoptera: Tettigoniidae) in a chalk grassland in Southern England. Biol Conserv 53:125–143CrossRefGoogle Scholar
  7. Cherrill AJ, Brown VK (1992) Ontogenetic changes in the micro-habitat preferences of D. verrucivorus (Orthoptera: Tettigoniidae) at the edge of its range. Ecography 15:37–44CrossRefGoogle Scholar
  8. Cherrill AJ, Shaughnessy J, Brown VK (1991) Oviposition behaviour of the bushcricket D. verrucivorus (L.) (Orthoptera: Tettigoniidae). The Entomol 110(1):37–42Google Scholar
  9. Coray A, Lehmann AW (1998) Taxonomie der Heuschrecken Deutschlands (Orthoptera): Formale Aspekte der wissenschaftlichen Namen. Articulata, Beiheft 7:63–152Google Scholar
  10. Curry JP (1994) Grassland invertebrates–ecology influence on soil fertility and effects on plant growth. Chapman and Hall, LondonGoogle Scholar
  11. Detzel P (1998) Die Heuschrecken Baden-Württembergs. UTB, StuttgartGoogle Scholar
  12. Fartmann T, Mattes H (1997) Heuschreckenfauna und Grünland–Bewirtschaftungsmaßnahmen und Biotopmanagement. Arb Inst Landschaftsökol 3:179–188Google Scholar
  13. Gottschalk E (1997) Habitatbindung und Populationsökologie der Westlichen Beißschrecke (Platycleis albopunctata, GOEZE 1778) (Orthoptera: Tettigoniidae): Eine Grundlage für den Schutz der Art. Dissertation, University of GöttingenGoogle Scholar
  14. Gottschalk E, Griebeler EM, Waltert M, Mühlenberg M (2003) Population dynamics in the grey bush cricket P. albopunctata (Orthoptera: Tettigoniidae)–What causes interpopulation differences? J Insect Conserv 7:45–58CrossRefGoogle Scholar
  15. Haes ECM, Harding PT (1997) Atlas of grasshoppers crickets and allied insects in Britain and Ireland. The Stationery Office, LondonGoogle Scholar
  16. Hasse T (2005) Charakterisierung der Sukzessionsstadien im Spergulo-Corynephoretum (Silbergrasfluren) unter besonderer Berücksichtigung der Flechten. Tuexenia 25:407–424Google Scholar
  17. Hasse T (2007) Campylopus introflexus invasion in a dune grassland: succession, disturbance and relevance of existing plant invader concepts. Herzogia 20:305–315Google Scholar
  18. Hein S, Voss J, Poethke HJ, Schröder B (2007) Habitat suitability models for the conservation of thermophilic grasshoppers and bush crickets–simple or complex? J Insect Conserv 11:221–240CrossRefGoogle Scholar
  19. Hjermann DO, Ims RA (1996) Landscape ecology of the wart-biter D. verrucivorus in a patchy landscape. J Animal Ecol 65:768–780CrossRefGoogle Scholar
  20. Ingrisch S (1976) Vergleichende Untersuchungen zum Nahrungsspektrum mitteleuropäischer Laubheuschrecken (Saltatoria: Tettigoniidae). Entomol Z 86(20):217–223Google Scholar
  21. Ingrisch S (1977) Beitrag zur Kenntnis der Larvenstadien mitteleuropäischer Laubheuschrecken (Orthoptera: Tettigoniidae). Z Angew Zool 64(4):459–501Google Scholar
  22. Ingrisch S (1979) Experimentell-ökologische Freilanduntersuchungen zur Monotopbindung der Laubheu-schrecken (Orthoptera: Tettigoniidae) im Vogelsberg. Beitr Nkunde Osthessen 15:33–95Google Scholar
  23. Ingrisch S (1986) The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera). 1. The effect of temperature on embryonic development and hatching. Oecologia 70:606–616CrossRefGoogle Scholar
  24. Ingrisch S (1988) Wasseraufnahme und Trockenresistenz der Eier europäischer Laubheuschrecken (Orthoptera: Tettigoniidae). Zool Jahrb Abt Allg Zool Phy Tiere 92:117–170Google Scholar
  25. Ingrisch S, Boekholt I (1983) Zur Wahl des Eiablageplatzes durch mitteleuropäische Saltatoria. Zool Beitr NF 28:33–46Google Scholar
  26. Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas. Die neue Brehm-Bücherei, MagdeburgGoogle Scholar
  27. Ketner-Oostra R, Sykora KV (2004) Decline of lichen-diversity in calcium-poor coastal dune vegetation since the 1970s, related to grass and moss encroachment. Phytocoenologia 34:521–549. doi: 10.1127/0340-269X/2004/0034-0521 CrossRefGoogle Scholar
  28. Ketner-Oostra R, Sykora KV (2008) Vegetation change in a lichen-rich inland drift sand area in the Netherlands. Phytocoenologia 38:267–286. doi: 10.1127/0340-269X/2008/0038-0267 CrossRefGoogle Scholar
  29. Kleukers RMJC (2001) The role of Orthoptera in Dutch nature conservation. Proc Exper Appl Entomol 12:147–149Google Scholar
  30. Kleukers RMJC, van Nieukerken EJ, Odé B, Willemse LPM, van Wingerden WKRE (1997) De sprinkhanen en krekels van Nederland (Orthoptera). Nederlandse Fauna 1:1–414Google Scholar
  31. Lensink BM (1963) Distributional ecology of some Acrididae (Orthoptera) in the dunes of Voorne, Netherlands. Tijdschrift voor Entomologie 106:357–443Google Scholar
  32. Maas S, Detzel P, Staudt A (2002) Gefährdungsanalyse der Heuschrecken Deutschlands. Verbreitungsatlas, Gefährdungseinstufung und Schutzkonzepte. Bundesamt für Naturschutz, Bonn-Bad GodesbergGoogle Scholar
  33. Maes D, Bonte D (2006) Using distribution patterns of five threatened invertebrates in a highly fragmented dune landscape to develop a multispecies conservation approach. Biol Conserv 133:490–499CrossRefGoogle Scholar
  34. Maes D, Ghesquiere A, Logie M, Bonte D (2006) Habitat use and mobility of two threatened coastal dune insects: implications for conservation. J Insect Conserv 10:105–115CrossRefGoogle Scholar
  35. McCreadie JW, Hamada N, Grillet ME (2004) Spatial-temporal distribution of preimaginal blackflies in Neotropical streams. Hydrobiologia 513:183–196CrossRefGoogle Scholar
  36. Moriaty F (1970) The significance of water absorption by the developing eggs of five British Acrididae (Saltatoria). Comp Biochem Phys 34:657–669CrossRefGoogle Scholar
  37. Oschmann M (1969) Bestimmungstabellen für die Larven mitteldeutscher Orthopteren. Dtsch Entomol Z, NF 16(I–III):277–291Google Scholar
  38. Oschmann M (1973) Untersuchungen zur Biotopbindung der Orthopteren. Faun Abh Staatl Mus Tkunde Dresden 4(21):177–206Google Scholar
  39. Poniatowski D, Fartmann T (2008) The classification of insect communities: lessons from orthopteran assemblages of semi-dry grasslands in central Germany. Eur J Entomol 105:659–671Google Scholar
  40. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  41. Reinhard H (1962) Klimatologie. Atlas der Bezirke Rostock, Schwerin und Neubrandenburg. VEB Topographischer Dienst, SchwerinGoogle Scholar
  42. Remke E, Brouwer E, Kooijman AM, Blindow I, Esselink H, Roelofs JGM (2009) Low atmospheric nitrogen loads lead to grass encroachment in coastal dunes, but only on acid soils. Ecosystems 12:1173–1188Google Scholar
  43. Schirmel J (2011) Response of the grasshopper M. maculatus (Orthoptera: Acrididae) to invasion by the exotic moss C. introflexus in acidic coastal dunes. J Coastal Conserv 15:159–162CrossRefGoogle Scholar
  44. Schirmel J, Mantilla-Contreras J, Blindow I, Fartmann T (2010a) Impact of succession and grass encroachment on heathland Orthoptera. J Insect Conserv 15 doi: 10.1007/s10841-010-9362-7
  45. Schirmel J, Blindow I, Fartman T (2010b) The importance of habitat mosaics for Orthoptera (Caelifera and Ensifera) in dry heathlands. Eur J Entomol 107:129–132Google Scholar
  46. Schirmel J, Timler L, Buchholz S (2011) Impact of the invasive moss C. introflexus on carabid beetles (Coleoptera: Carabidae) and spiders (Araneae) in acidic coastal dunes at the southern Baltic Sea. Biol Invasions 13:605–620CrossRefGoogle Scholar
  47. Schuhmacher O, Fartmann T (2003) Offene Bodenstellen und eine heterogene Raumstruktur–Schlüsselrequisiten im Lebensraum des Warzenbeißers (Decticus verrucivorus). Articulata 18(1):71–93Google Scholar
  48. Ssymank A, Hauke U, Rückriem C, Schröder E (1998) Das europäische Schutzgebietssystem NATURA 2000. BfN-Handbuch zur Umsetzung der Fauna-Flora-Habitat-Richtlinie und der Vogelschutz-Richtlinie. Schriftenr Landschaftspfl Natursch 53:1–560Google Scholar
  49. Stefanescu C, Herrando S, Páramo F (2004) Butterfly species richness in the north-west Mediterranean Basin: the role of natural and human-induced factors. J Biogeogr 31:905–915CrossRefGoogle Scholar
  50. Stoutjesdijk P, Barkman JJ (1992) Microclimate vegetation and fauna. Opulus Press, UppsalaGoogle Scholar
  51. Sundermeier A (1998) Methoden zur Analyse der Vegetationsstruktur. In: Traxler A (ed) Handbuch des vegetationsökologischen Monitorings. Teil A: Methoden. Umweltbundesamt Wien, pp 123–158Google Scholar
  52. Tews J, Brose U, Grimm V, Tielborger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92CrossRefGoogle Scholar
  53. van Wingerden WKRE, Musters JCM, Maaskamp FIM (1991) The influence of temperature on the duration of egg development in West European grasshoppers (Orthoptera: Acrididae). Oecologia 87:417–423CrossRefGoogle Scholar
  54. Waloff N (1950) The egg pods of British shorthorned grasshoppers (Acrididae). Proc R Entomol Soc London (A) 25:115–126Google Scholar
  55. Webb NR (1998) The traditional management of European heathlands. J Appl Ecol 35:987–990CrossRefGoogle Scholar
  56. Willott SJ, Hassall M (1998) Life-history responses of British grasshoppers (Orthoptera: Acrididae) to temperature change. Func Ecol 12:232–241CrossRefGoogle Scholar
  57. Wranik W, Meitzner V, Martschei T (2008) Verbreitungsatlas der Heuschrecken Mecklenburg-Vorpommerns. Beiträge zur floristischen und faunistischen Erforschung des Landes Mecklenburg-Vorpommern, LUNG M-VGoogle Scholar
  58. Wünsch Y, Schirmel J, Fartmann T (2011) Habitatnutzung juveniler M. maculatus (Caelifera: Gomphocerinae) und P. albopunctata (Ensifera: Tettigoniinae) in Küstendünenheiden. Articulata 25:167–183Google Scholar
  59. Zehm A (1997) Untersuchungen zur Nahrungswahl von Heuschrecken (Orthoptera) in zwei Sand-Pioniergesellschaften der nördlichen Oberrheinebene. Articulata 12:131–140Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yvonne Wünsch
    • 1
  • Jens Schirmel
    • 2
    • 3
  • Thomas Fartmann
    • 1
  1. 1.Institute of Landscape Ecology, Department of Community EcologyUniversity of MünsterMünsterGermany
  2. 2.Biological Station of HiddenseeUniversity of GreifswaldIsle of HiddenseeGermany
  3. 3.Ecosystem Analysis, Institute for Environmental SciencesUniversity of Koblenz-LandauLandauGermany

Personalised recommendations