Journal of Insect Conservation

, Volume 16, Issue 2, pp 187–206 | Cite as

An ecological classification of Central European macromoths: habitat associations and conservation status returned from life history attributes

  • Anezka Pavlikova
  • Martin KonvickaEmail author


To be used as a predictive conservation tool, classification of animal habitats should rely on actual resource requirements of individual species. Shreeve et al. (J Insect Conserv 5:145–161, 2001) produced a resource-based habitat classification for British butterflies, obtaining habitat association groups, whose constituent species differed in their distribution extent, distribution change and vulnerability in Britain. To test the utility of this approach for a group with a less-known biology, we produced a resource-based classification of habitats of Central European macromoths. We worked with macrolepidopteran moth families, except for the megadiverse Geometridae and Noctuidae. We produced a matrix of 178 life history attributes describing resource use by 164 species, subjected the matrix to ordination analysis, and compared the resulting moths groupings with external ecological information. Five habitat association groups were distinguished: I—close canopy moths, II—open canopy moths, III—grasslands moths, IV—herb-feeding hawk moths, and V—lichen feeders. The classification sustained deleting attributes related to host plants taxonomy. Groups I–III sustained control for taxonomic positions of the moths, whereas IV and V did not. Members of the groups differed in the representation of externally obtained habitat associations, biogeography elements, threat status, and range size. Endangered species were over-represented in groups II and III and underrepresented in group I, in agreement with recent land cover changes across the continent. Species resources can be used to reconstruct their habitat needs, and it is possible to scale up from life histories through habitat use to range structures.


Conservation Distribution ranges Habitat components Lepidoptera Life history traits Palaearctic region 



We wish to thank J. Darebnik, J. Benes, Z. Faltynek Fric, V. Hula, T.G. Shreeve, J. Skala and M. Zapletal for precious advice and discussions. This work was supported by the Grant Agency of Czech Republic (P505/10/2167), Czech Ministry of the Environment (SP/2d3/62/08) and Education (LC-06073, 6007665801). Comments of two anonymous referees much contributed to the quality of the paper.

Supplementary material

10841_2011_9405_MOESM1_ESM.xls (63 kb)
Appendix 1: Data sources (literature, internet sites, lepidopterists) used to compile the matrix of macromoth species attributes. Sheet 1: list of the sources, Sheet 2: individual species with the most relevant sources for the particular species (XLS 63 kb)
10841_2011_9405_MOESM2_ESM.xls (265 kb)
Appendix 2: Original data files. Sheet 1: Binary 1–0 matrix of life history attributes of 174 Central European macromoths. Sheet 2: matrix indicating moths family memberships, used as covariate matrix in partial PCA analysis (XLS 265 kb)


  1. Alberti B (1951) Über das Vorkommen von Laelia coenosa Hbn. am Müritzsee in Mecklenburg (Lymantriidae). Z Lepidopterologie 1:123–126Google Scholar
  2. Asher J, Warren M, Fox R, Harding P, Jeffcoate G (eds) (2001) The Millennium atlas of butterflies in Britain and Ireland. Oxford University Press, OxfordGoogle Scholar
  3. Bendib A, Minet J (1999) Lithosiine main lineages and their possible interrelationships. I.—definition of new or resurrected tribes (Lepidoptera: Arctiidae). Ann Soc Entomol Fr 35:241–263Google Scholar
  4. Benes J, Cizek O, Dovala J, Konvicka M (2006) Intensive game keeping, coppicing and butterflies: the story of Milovicky wood, Czech Republic. Forest Ecol Manag 237:353–365CrossRefGoogle Scholar
  5. Bergmann A (1953) Die Grossschmetterlinge Mittledeutschlandsch, Bd. 3. Urania Verlag, LeipzigGoogle Scholar
  6. Bolz R (1998) Zur Biologie und Ökologie des Heckenwollafters Eriogaster catax (Linnaeus, 1758) in Bayern (Lepidoptera: Lasiocampidae). Nachr Entomol Vereins Apollo 184:331–340Google Scholar
  7. Bolz R (2008) Diversity of moth communities (Insecta: Lepidoptera) in differently structured oak-hornbeam forests: a comparison of different phases of succession in coppice with standards and forests with high standard trees. In: Floren A, Schmidl J (eds) Canopy arthropod research in Europe. Bioform entomology, Nuremberg, pp 427–443Google Scholar
  8. Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28CrossRefGoogle Scholar
  9. Borregaard MK, Rahbek C (2010) Causality of the relationship between geographic distribution and species abundance. Q Rev Biol 85:3–25PubMedCrossRefGoogle Scholar
  10. Brooks DR, McLennan DA (1991) Phylogeny, ecology and behavior: a research program in comparative biology. The University of Chicago Press, ChicagoGoogle Scholar
  11. Bruckmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809CrossRefGoogle Scholar
  12. Cerny K (1985) Vymírající motýl písčin a stepí. Živa 33:26Google Scholar
  13. Chytry M, Danihelka J, Horsak M, Koci M, Kubesova S, Lososova Z, Otypkova Z, Tichy L, Martynenko VB, Baisheva EZ (2010) Modern analogues from the Southern Urals provide insights into biodiversity change in the early Holocene forests of Central Europe. J Biogeography 37:767–780CrossRefGoogle Scholar
  14. Cizek L (2005) Diet composition and body size in insect herbivores: why do small species prefer young leaves? Eur J Entomol 102:675–681Google Scholar
  15. Cizek L, Fric Z, Konvicka M (2006) Host plant defences and voltinism in European butterflies. Ecol Entomol 31:337–344CrossRefGoogle Scholar
  16. Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899PubMedCrossRefGoogle Scholar
  17. Conrad KF, Woiwod IP, Parsons M, Fox R, Warren MS (2004) Long-term population trends in widespread British moth. J Insect Conserv 8:119–136Google Scholar
  18. Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol Conserv 132:279–291CrossRefGoogle Scholar
  19. de Lattin G (1967) Grundriss der Zoogeographie. Fischer, JenaGoogle Scholar
  20. Dennis RLH (2010) A resource-based habitat view for conservation: butterflies in the British landscape. Wiley, BlackwellGoogle Scholar
  21. Dennis RLH, Wiliasm WR, Shreeve TG (1991) A Multivariate approach to the determination of faunal structures among European butterfly species (Lepidoptera, Rhopalocera). Zool J Linn Soc-Lond 101:1–49CrossRefGoogle Scholar
  22. Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426CrossRefGoogle Scholar
  23. Dennis RLH, Hodgson JG, Grenyer R, Shreeve TG, Roy DB (2004) Host plants and butterfly biology. Do host-plant strategies drive butterfly status? Ecol Entomol 29:12–26CrossRefGoogle Scholar
  24. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Bd. 1 u. 2. Eugen Ulmer, StuttgartGoogle Scholar
  25. Eisner T, Eisner M, Rossini C, Iyengar VK, Roach BL, Benedikt E, Meinwald J (2000) Chemical defense against predation in an insect egg. P Natl Acad Sci USA 97:1634–1639CrossRefGoogle Scholar
  26. Emmet AM, Heath J (1992) The moths and butterflies of Great Britain and Ireland, vol 7, Part 2. Harley Books, ColchesterGoogle Scholar
  27. Fajcik J (2003) Motýle strednej a severnej Európy. Jaroslav Fajčík, PrahaGoogle Scholar
  28. Farkac J, Kral D, Skorpik M (2005) Červený seznam ohrožených druhů České republiky. Bezobratlí Red list of threatened species in the Czech Republic. Invertebrates. AOPK ČR, PragueGoogle Scholar
  29. Feeny P (1976) Plant apparency and chemical defense. Recent Adv Phytochem 10:1–40Google Scholar
  30. Fox R, Asher J, Brereton T, Roy D, Warren M (2006) The state of butterflies in Britain and Ireland. Pisces Publications, Newbury BerkshireGoogle Scholar
  31. Fox R, Randle Z, Hill L, Anders S, Boon S-A (2008) Moths count? Moth recording and more in the UK. In: Proceedings of the international symposium future of butterflies in Europe II, Dutch Butterfly Conservation (De Vlindersichting), WICC Congress Centre, CA, Wageningen, 17–19 April 2008, 54Google Scholar
  32. Franzen M, Johannesson M (2007) Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics. J Insect Conserv 11:367–390CrossRefGoogle Scholar
  33. Freese A, Benes J, Bolz R, Cizek O, Dolek M, Geyer A, Gros P, Konvicka M, Liegl A, Stettmer C (2006) Habitat use of the endangered butterfly Euphydryas maturna and forestry in Central Europe. Anim Conserv 9:388–397CrossRefGoogle Scholar
  34. Gaston KJ (1996) The multiple forms of the interspecific abundance-distribution relationship. Oikos 76:211–220CrossRefGoogle Scholar
  35. Gossner MM (2009) Light intensity affects spatial distribution of Heteroptera in deciduous forests. Eur J Entomol 106:241–252Google Scholar
  36. Gregory RD, van Strien A, Vorisek P, Meyling AWG, Noble DG, Foppen RPB, Gibbons DW (2005) Developing indicators for European birds. Phil Trans R Soc B Biol 360:269–288CrossRefGoogle Scholar
  37. Groenendijk D, Ellis WN (2010) The state of the Dutch larger moth fauna. J Insect Conserv (in press)Google Scholar
  38. Hardy PB, Sparks TH, Isaac NJB, Dennis RLH (2007) Specialism for larval and adult consumer resources among British butterflies: implications for conservation. Biol Conserv 138:440–452CrossRefGoogle Scholar
  39. Hedl R, Kopecky M, Komarek J (2010) Half a century of succession in a temperate Oakwood: from species-rich community to mesic forest. Divers Distrib 16:267–276CrossRefGoogle Scholar
  40. Hodgson JG (1993) Commonness and rarity in British butterflies. J Appl Ecol 30:407–427CrossRefGoogle Scholar
  41. Hruby K (1964) Prodromus Lepidopter Slovenska. SAV, BratislavaGoogle Scholar
  42. Isaac NJB, Cowlishaw G (2004) How species respond to multiple extinction threats. P Roy Soc Lond Series B-Biol 271:1135–1141CrossRefGoogle Scholar
  43. Jedicke E (1997) Die Roten Listen: gefährdete Pflanzen, Tiere, Pflanzengesellschaften und Biotope in Bund und Ländern. Ulmer, StuttgartGoogle Scholar
  44. Jennings N, Pocock MJO (2009) Relationships between sensitivity to agricultural intensification and ecological traits of insectivorous mammals and arthropods. Conserv Biol 23:1195–1203PubMedCrossRefGoogle Scholar
  45. Jiguet F, Gadot AS, Julliard R, Newson SE, Couvet D (2007) Climate envelope, life history traits and the resilience of birds facing global change. Glob Change Biol 13:1672–1684CrossRefGoogle Scholar
  46. Kadlec T, Kotela MAAM, Novak I, Konvicka M, Jarosik V (2009) Effect of land use and climate on the diversity of moth guilds with different habitat specialization. Community Ecol 10:152–158CrossRefGoogle Scholar
  47. Keil P, Hawkins BA (2009) Grids versus regional species lists: are broad-scale patterns of species richness robust to the violation of constant grain size? Biodiv Conserv 18:3127–3137CrossRefGoogle Scholar
  48. Kitching IJ, Cadiou JM (2000) Hawkmoths of the world; an annotated and illustrated revisionary checklist (Lepidoptera: Sphingidae). Cornell University Press, IthacaGoogle Scholar
  49. Komonen A, Grapputo A, Kaitala V, Kotiaho JS, Paivinen J (2004) The role of niche breadth, resource availability and range position on the life history of butterflies. Oikos 105:41–54CrossRefGoogle Scholar
  50. Komonen A, Tikkamaki T, Mattila N, Kotiaho JS (2008) Patch size and connectivity influence the population turnover of the threatened chequered blue butterfly, Scolitantides orion (Lepidoptera: Lycaenidae). Eur J Entomol 105:131–136Google Scholar
  51. Kotiaho JS, Kaitala V, Komonen A, Paivinen J (2005) Predicting the risk of extinction from shared ecological characteristics. P Natl Acad Sci USA 102:1963–1967CrossRefGoogle Scholar
  52. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900CrossRefGoogle Scholar
  53. Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Ockinger E, Partel M, Pino J, Poyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605PubMedCrossRefGoogle Scholar
  54. Kristensen NP, Scoble MJ, Karsholt O (2007) Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668:699–747Google Scholar
  55. Lastuvka Z (1998) Seznam motýlů České a Slovenské Republiky (Insecta, Lepidoptera). Konvoj, BrnoGoogle Scholar
  56. Loyola RD, de Oliveira G, Diniz-Filho JAF, Lewinsohn TM (2008) Conservation of neotropical carnivores under different prioritization scenarios: mapping species traits to minimize conservation conflicts. Divers Distrib 14:949–960CrossRefGoogle Scholar
  57. Macek J, Dvorak J, Traxler L, Cervenka V (2007) Motýli a housenky střední Evropy. Noční motýli I. Academia, PrahaGoogle Scholar
  58. Maes D, van Dyck H (2005) Habitat quality and biodiversity indicator performances of a threatened butterfly versus a multispecies group for wet heathland in Belgium. Biol Conserv 123:177–187CrossRefGoogle Scholar
  59. Magyari EK, Chapman JC, Passmore DG, Allen JRM, Huntley JP, Huntley B (2010) Holocene persistence of wooded steppe in the Great Hungarian plain. J Biogeography 37:915–935CrossRefGoogle Scholar
  60. Mattila N, Kaitala V, Komonen A, Kotiaho JS, Paivinen J (2006) Ecological determinants of distribution decline and risk of extinction in moths. Conserv Biol 20:1161–1168PubMedCrossRefGoogle Scholar
  61. Mattila N, Kotiaho JS, Kaitala V, Komonen A (2008) The use of ecological traits in extinction risk assessments: a case study on geometrid moths. Biol Conserv 141:2322–2328CrossRefGoogle Scholar
  62. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DCGoogle Scholar
  63. Miller MA (1998) Eine Zucht von Proserpinus proserpina (Pappas, 1772) mit bemerkungen zur Ökologie und Biologie (Lep., Sphingidae). Mitt Thueringer Entomologenverband 5:10–12Google Scholar
  64. Ockinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Poyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Letters 13:969–979Google Scholar
  65. Paluch JG (2007) The spatial pattern of a natural European beech (Fagus sylvatica L.)—silver fir (Abies alba Mill.) forest: a patch-mosaic perspective. Forest Ecol Manag 253:161–170CrossRefGoogle Scholar
  66. Pittaway AR (1993) The Hawk moths of the western palaearctic. Harley Books, LondonGoogle Scholar
  67. Poschlod P, Bakker JP, Kahmen S (2005) Changing land use and its impact on biodiversity. Basic Appl Ecol 6:93–98CrossRefGoogle Scholar
  68. Poyry J, Luoto M, Heikkinen RK, Kuussaari M, Saarinen K (2009) Species traits explain recent range shifts of Finnish butterflies. Glob Change Biol 15:732–743CrossRefGoogle Scholar
  69. Rackham O (1998) Savanna in Europe. In: Kirby KJ, Watkins C (eds) The ecological history of European forests. CABI, Wallingford, pp 1–24Google Scholar
  70. Reif J, Storch D, Vorisek P, Stastny K, Bejcek V (2008a) Bird-habitat associations predict population trends in central European forest and farmland birds. Biodivers Conserv 17:3307–3319CrossRefGoogle Scholar
  71. Reif J, Vorisek P, Stastny K, Bejcek V, Petr J (2008b) Agricultural intensification and farmland birds: new insights from a central European country. Ibis 150:596–605CrossRefGoogle Scholar
  72. Ruf C, Freese A, Fiedler K (2003) Larval sociality in three species of central-place foraging lappet moths (Lepidoptera: Lasiocampidae): a comparative survey. Zool Anz 242:209–222CrossRefGoogle Scholar
  73. Sadlo J, Chytry M, Pysek P (2007) Regional species pools of vascular plants in habitats of the Czech Republic. Preslia 79:303–321Google Scholar
  74. Saito H (2001) Blue biliprotein as an effective factor for cryptic colouration in Rhodinia fugax larvae. J Insect Physiol 47:205–212PubMedCrossRefGoogle Scholar
  75. Samways MJ (2005) Insect diversity conservation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  76. Schulz S (1998) Insect–plant interactions. Metabolism of plant compounds to pheromones and allomones by lepidoptera and leaf beetles. Eur J Org Chem 1:13–20CrossRefGoogle Scholar
  77. Settele J, Feldman R, Reinhart R (1999) Die Tagfalter Deutschlands. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  78. Shreeve TG, Dennis RLH, Roy DB, Moss D (2001) An ecological classification of British butterflies: ecological attributes and biotope occupancy. J Insect Conserv 5:145–161CrossRefGoogle Scholar
  79. Spitzer L, Konvicka M, Benes J, Tropek R, Tuf IH, Tufova J (2008) Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol Conserv 141:827–837CrossRefGoogle Scholar
  80. Stefanescu C, Traveset A (2009) Factors influencing the degree of generalization in flower use by Mediterranean butterflies. Oikos 118:1109–1117CrossRefGoogle Scholar
  81. ten Hagen W (1999) Bemerkungen zur Biologie von Arctia festiva arafati (Lepidoptera: Arctiidae). Phegea 27:59–64Google Scholar
  82. ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, New YorkGoogle Scholar
  83. Thomas JA (1991) Rare species conservation: case studies of european butterflies. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation, 31st symposium of the British Ecological Society, 1989Google Scholar
  84. Thomas CD, Abery JCG (1995) Estimating rates of butterfly decline from distribution maps—THE effect of scale. Biol Conserv 73:59–65CrossRefGoogle Scholar
  85. Thomas JA, Morris MG, Hambler C (1994) Patterns, mechanisms and rates of extinction among invertebrates in the United Kingdom. Philos T Roy Soc B 344:47–54CrossRefGoogle Scholar
  86. Tudor O, Dennis RLH, Greatorex-Davies JN, Sparks TH (2004) Flower preferences of woodland butterflies in the UK: nectaring specialists are species of conservation concern. Biol Conserv 119:397–403CrossRefGoogle Scholar
  87. Tullberg BS, Hunter AF (1996) Evolution of larval gregariousness in relation to repellent defences and warning coloration in tree-feeding Macrolepidoptera: a phylogenetic analysis based on independent contrasts. Biol J Linn Soc 57:253–276CrossRefGoogle Scholar
  88. Valimaki P, Itamies J (2005) Effects of canopy coverage on the immature stages of the Clouded Apollo butterfly [Parnassius mnemosyne (L.)] with observations on larval behaviour. Entomol Fennica 16:117–123Google Scholar
  89. Valverde T, Silvertown J (1997) Canopy closure rate and forest structure. Ecology 78:1555–1562CrossRefGoogle Scholar
  90. Vanreusel W, Van Dyck H (2007) When functional habitat does not match vegetation types: a resource-based approach to map butterfly habitat. Biol Conserv 135:202–211CrossRefGoogle Scholar
  91. Vanreusel W, Maes D, Van Dyck H (2007) Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies. Conserv Biol 21:201–212PubMedCrossRefGoogle Scholar
  92. Vera FWM (2000) Grazing ecology and forest history. CAB International, WallingfordCrossRefGoogle Scholar
  93. Vodka S, Konvicka M, Cizek L (2009) Habitat preferences of oak-feeding xylophagous beetles in a temperate woodland: implications for forest history and management. J Insect Conserv 13:553–562CrossRefGoogle Scholar
  94. Vrabec V, Lastuvka Z, Benes J et al (2005) Insecta: Lepidoptera. In: Farkac J, Kral D, Skorpik M (eds) Červený seznam ohrožených druhů České republiky. Agentura ochrany přírody a krajiny ČR, Praha, pp 172–238Google Scholar
  95. WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273CrossRefGoogle Scholar
  96. Watt WB, Boggs CL (2003) Synthesis: butterflies as model systems in ecology and evolution—present and future. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies: ecology and evolution taking flight. University of Chicago Press, Chicago, pp 603–613Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
  2. 2.Biological Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic

Personalised recommendations