Journal of Insect Conservation

, Volume 15, Issue 6, pp 879–890 | Cite as

Population extinctions in the Italian diurnal lepidoptera: an analysis of possible causes

  • Simona Bonelli
  • Cristiana Cerrato
  • Nicola Loglisci
  • Emilio Balletto


In depth studies of patterns of extinction are fundamental to understand species vulnerability, in particular when population extinctions are not driven by habitat loss, but related to subtle changes in habitat quality and are due to ‘unknown causes’. We used a dataset containing over 160,000 non-duplicate individual records of occurrence (referred to 280 butterflies and 43 zygenid moths), and their relative extinction data, to carry out a twofold analysis. We identified ecological preferences that influence extinction probability, and we analysed if all species were equally vulnerable to the same factors. Our analyses revealed that extinctions were non-randomly distributed in space and time, as well as across species. Most of the extinctions were recorded in 1901–1950 and, as expected, populations at their range edges were more prone to become extinct for non-habitat-related causes. Ecological traits were not only unequally distributed between extinction and non-extinction events, but also not all ecological features had the same importance in driving population vulnerability. Hygrophilous and nemoral species were the most likely to experience population losses and the most prone to disappear even when their habitat remained apparently unchanged. Species vulnerability depends on both ecological requirements and threat type: in fact, each species showed a distinct pattern of vulnerability, depending on threats. We concluded that the analysis may be an important step to prevent butterfly declines: species that are strongly suffering due to ‘unknown changes’ are in clear and urgent need of more detailed auto-ecological studies.


Butterflies Zygenids Extinctions Global change Habitat loss 

Supplementary material

10841_2011_9387_MOESM1_ESM.doc (62 kb)
Supplementary material 1 (DOC 61 kb)


  1. Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  2. Allioni C (1766) Lepidoptera. In: Manipulus Insectorum Taurinensium a Carolo Allionio editus. Miscellanea di Filosophia e Matematica della Società Reale di Torino per gli anni 1762–1765 N. 3185–3198Google Scholar
  3. Balletto E, Kudrna O (1985) Some aspects of the conservation of the butterflies (Lepidoptera: Papilionoidea) in Italy, with recommendations for the future strategy. Boll Soc Ent Ital 117:39–59Google Scholar
  4. Balletto L, Bonelli S, Cassulo L (2005) Mapping the Italian butterfly diversity for conservation. In: Kühn E, Feldmann R, Thomas JA, Settele J (eds) Studies on the ecology and conservation of butterflies in Europe. 1. General concepts and case studies. Pensoft Publ. Co., Sofia & Moscow, pp 71–76Google Scholar
  5. Balletto E, Bonelli S, Cassulo L (2007) Insecta Lepidoptera Papilionoidea. In: Ruffo S, Stoch F (eds) Checklist and distribution of the Italian Fauna. 10,000 terrestrial and inland water species. 2nd and revised edition—Memorie del Museo Civico di Storia Naturale di Verona, 2° serie, Sez. Scienze della Vita. 17: 257–261, 280 pls on CD-ROMGoogle Scholar
  6. Balletto E, Bonelli S, Borghesio L, Casale A, Brandmayr P, Vigna-Taglianti A (2010) Hotspots of biodiversity and conservation priorities: a methodological approach. It J Zool 77:2–13CrossRefGoogle Scholar
  7. Bätzing W, Perlik M, Dekleva M (1996) Urbanization and depopulation in the Alps. Mt Res Devel 16:335–350CrossRefGoogle Scholar
  8. Bertaccini E, Fiumi G (1999) Bombici e Sfingi d’Italia (Lepidoptera Zygaenidae). In: Giuliano Russo (ed.) Vol. III—Natura. Monterenzio (BO)Google Scholar
  9. Castellano S, Rosso A, Giacoma C (2004) Active choice, passive attraction and the cognitive machinery of acoustic preferences. Anim Behav 68:323–329CrossRefGoogle Scholar
  10. Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296:904–907PubMedCrossRefGoogle Scholar
  11. Chemini C, Rizzoli A (1993) Land use change and biodiversity conservation in the Alps. J MT Ecol 7:1–7Google Scholar
  12. Chiavetta M (1998) Le farfalle dell’Emilia-Romagna. Nuova Editoriale Grasso, BolognaGoogle Scholar
  13. Cowlishaw G, Pettifor RA, Isaac NJB (2009) High variability in patterns of population decline: the importance of local processes in species extinctions. Proc R Soc B 276:63–69PubMedCrossRefGoogle Scholar
  14. Cupani F (1713) Panphyton siculum sive historia naturalis de animalibus stirpibus, fossilibus, quae in Sicilia, vel in circuito ejus invenientur. Panormi, Ex Typographia Regia Antonini EpiroGoogle Scholar
  15. de Prunner L (ed) (1798) Lepidoptera Pedemontana Illustrata. Mathaeus Guaita, Augusta TaurinorumGoogle Scholar
  16. Dennis RLH, Sparks TH, Hardy PB (1999) Bias in butterfly distributions maps: the effects of sampling effort. J Insect Conserv 3:33–34CrossRefGoogle Scholar
  17. Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426CrossRefGoogle Scholar
  18. Dennis RLH, Shreeve TG, Van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966CrossRefGoogle Scholar
  19. Diamond JM (1987) Extant unless proven extinct? Or extinct unless proven extant? Conserv Biol 1:77–79CrossRefGoogle Scholar
  20. EEA-European Environment Agency (2005) The European environment—state and outlook 2005. Copenhagen.
  21. Ehrlich PR (1994) Energy use and biodiversity loss. Phil Trans R Soc Lond B 344:99–104CrossRefGoogle Scholar
  22. Ehrlich PR, Daily GC (1993) Population extinction and saving biodiversity. Ambio 22:64–68Google Scholar
  23. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142PubMedCrossRefGoogle Scholar
  24. Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biol 12:1545–1553CrossRefGoogle Scholar
  25. Giorna A (1791) Calendario entomologico, ossia osservazioni sulle stagioni degl’Insetti nel clima Piemontese e particularmente ne’ contorni di Torino. Nella Stamperia Reale, TorinoGoogle Scholar
  26. Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford, USAGoogle Scholar
  27. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251CrossRefGoogle Scholar
  28. Hobbs RJ, Mooney HA (1998) Broadening the extinction debate: population deletions and additions in California and Western Australia. Conserv Biol 12:271–283CrossRefGoogle Scholar
  29. Hope ACA (1968) A simplified Monte Carlo significance test procedure. J R Stat Soc 30:582–598Google Scholar
  30. Hopkins GW, Freckleton RP (2002) Declines in the numbers of amateur and professional taxonomists: implications for conservation. Anim Conserv 5:245–249CrossRefGoogle Scholar
  31. Hübner L (1790) Beiträge zur Geschiche der Schmerrelinge. AugsburgGoogle Scholar
  32. Huemer P (1996) Lepidopteren im Bereich der dealpinen flüsse Meduna und Tagliamento (Friuli-Venezia Giulia, Norditalien). Gortania Atti Mus Friulano St Nat 18:201–214Google Scholar
  33. IPCC (2007) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, SwitzerlandGoogle Scholar
  34. Isaac NJB, Cowlishaw G (2004) How species respond to multiple extinction threats. Proc R Soc Lond B 271:1135–1141CrossRefGoogle Scholar
  35. Kitschelt R (1925) Zusammenstellung der bisher in dem ehemaligen Gebiete von Südtirol beobachteten Grossschmetterlinge. Im Eigenverlage des Verfassers, Wien. xvii + 421 ppGoogle Scholar
  36. Koh LP, Sodhi NS, Brook BW (2004) Ecological correlates of extinction proneness in tropical butterflies. Conserv Biol 18:1571–1578CrossRefGoogle Scholar
  37. Laiolo P, Dondero F, Ciliento E, Rolando A (2004) Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. J Appl Ecol 41:294–304CrossRefGoogle Scholar
  38. Lasanta T, González-Hidalgo J, Vincente-Serrano SM, Sferi E (2006) Using landscape ecology to evaluate an alternative management scenario in abandoned Mediterranean mountain areas. Land Urb Plan 78:101–114CrossRefGoogle Scholar
  39. Lobo JM, Lumaret JP, Robert P (1997) Taxonomic databases as tools in spatial biodiversity research. Ann Soc Entomol Fr 33:129–138Google Scholar
  40. Maes D, Gilbert M, Titeux N, Goffart P, Dennis RLH (2003) Prediction of butterfly diversity hotspots in Belgium: a comparison of statistically focused and land-use focused models. J Biogeogr 30:1907–1920CrossRefGoogle Scholar
  41. McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516CrossRefGoogle Scholar
  42. Menendez R, Gonzalez-Megias A, Hill JK, Braschler B, Willis SG, Collingham Y, Fox R, Roy DB, Thomas CD (2006) Species richness changes lag behind climate change. Proc R Soc Lond B 273:1465–1470CrossRefGoogle Scholar
  43. Meyer M (1981) Révision systématique, chorologique et écologique des populations européennes de Lycaena (Helleia) helle Denis & Schiffermüller, 1775 (Lep. Lycaenidae). Linneana belgica 8(6): 238–260, (8): 345–358, (10): 451–466Google Scholar
  44. New T (2007) Understanding the requirements of the insects we seek to conserve. J Insect Conserv 11:95–97CrossRefGoogle Scholar
  45. Nowicki P, Bonelli S, Barbero F, Balletto E (2009) Relative importance of density-dependent regulation and environmental stochasticity for butterfly population dynamics. Oecologia 161:227–239PubMedCrossRefGoogle Scholar
  46. Olsson EGA, Austrheim G, Grenne SN (2000) Landscape change patterns in mountains, land use and environmental diversity, mid-Norway 1960–1993. Landscape Ecol 15:155–177CrossRefGoogle Scholar
  47. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  48. Pauly D (1995) Anedoctes and the shifting baseline syndrome of fisheries. Trend Ecol Evol 10:430CrossRefGoogle Scholar
  49. Petagna V (1786) Specimen Insectorum ulterioris Calabriae. Neapoli, Typis Petri PergerGoogle Scholar
  50. Pimm SL, Askins RA (1995) Forest losses predict bird extinctions in eastern North America. Proc Natl Acad Sci USA 92:9343–9347PubMedCrossRefGoogle Scholar
  51. Preiss E, Martin JL, Debussche M (1997) Rural depopulation and recent landscape changes in a Mediterranean region: consequences to the breeding avifauna. Landscape Ecol 12:51–61CrossRefGoogle Scholar
  52. Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B 267:1947–1952CrossRefGoogle Scholar
  53. Rocci U (1911) Contribuzione allo studio dei Lepidotteri del Piemonte. Note ed osservazioni. I. Atti Soc Ligustica Sci Nat Genova 22:153–221Google Scholar
  54. Roy DB, Rothery P, Moss D, Pollard E, Thomas JA (2001) Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J Animal Ecol 70:201–217CrossRefGoogle Scholar
  55. Ruffo S, Stoch F (2007) Checklist and Distribution of the Italian Fauna. 10,000 terrestrial and inland water species. 2nd and revised edition—Memorie del Museo Civico di Storia Naturale di Verona, 2° serie, Sez. Scienze della Vita. 17: 257–261, 280 pls on CD-ROMGoogle Scholar
  56. Scalercio S, Sapia M, Brandmayr P (2006) Changes in species assemblages: Carabid beetles and butterflies after a quarter of century on the top of the Pollino Mountains, Italy. In: Price MF (ed) Global change in mountain regions. Sapiens Publishing, Duncow, Kirkmahoe, Dumfrieshire, pp 160–161Google Scholar
  57. Scopoli JA (1763) Entomologia carniolica, exhibens insecta Carnioliae indigena et distributa in ordines, genera, species, varietates. Methodo Linnaeano. Vindobonae, Typis Ioannis Thomae Trattnerm. VindobonaeGoogle Scholar
  58. Settele J, Kühn E (2009) Insect conservation. Science 325:41–42PubMedCrossRefGoogle Scholar
  59. Settele J, Kudrna O, Harpke A, Kühn I, Van Swaay CAM, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kühn E, Van Halder I, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic risk atlas of European butterflies. Pensoft, MoscowGoogle Scholar
  60. Shreeve TG, Dennis RLH, Roy DB, Moss D (2001) An ecological classification of British butterflies: ecological attributes and biotope occupancy. J Insect Conserv 5:145–161CrossRefGoogle Scholar
  61. Stefanescu C, Herrando S, Páramo F (2004) Butterfly species richness in the North-Western Mediterranean Basin: the role of natural and human-induced factors. J Biogeogr 31:905–915CrossRefGoogle Scholar
  62. Storace L (1952) Su alcune Lycaenidae italiane, specialmente della zona di Arquata Scrivia (Piemonte) (Lepidoptera). Memorie Soc Ent Ital 31:132–154Google Scholar
  63. Thomas JA (1991) Rare species conservation: case studies of European butterflies. Symp Br Ecol Soc 31:149–197Google Scholar
  64. Thomas CD (1994) Local extinctions, colonizations and distributions: habitat tracking by British butterflies. In: Leather SR, Watt AD, Walters KFA, Mills NJ (eds) Individuals, populations and patterns in ecology. Intercept, Andover, pp 319–336Google Scholar
  65. Thomas JA (1995) The conservation of declining butterfly populations in Britain and Europe: priorities, problems and successes. Biol J Lin Soc 56:55–72CrossRefGoogle Scholar
  66. Thomas JA (2005) Monitoring change in the abundance and in distribution of insects using butterflies and other indicator groups. Phi Trans R Soc B 360:339–357CrossRefGoogle Scholar
  67. Thomas CD, Abery JCG (1995) Estimating rates of butterfly decline from distribution maps: the effect of scales. Biol Conserv 73:59–65CrossRefGoogle Scholar
  68. Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581PubMedCrossRefGoogle Scholar
  69. Thomas CD, Cameron A, Green RE, Bakkens M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148PubMedCrossRefGoogle Scholar
  70. Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416PubMedCrossRefGoogle Scholar
  71. Thomas JA, Simcox DJ, Clarke RT (2009) Successful conservation of a threatened Maculinea butterfly. Science 325:80–83PubMedCrossRefGoogle Scholar
  72. Thompson K, Hillier SH, Grime JP, Bossard CC, Band SR (1996) A functional analysis of a limestone grassland community. J Veg Sci 7:371–380CrossRefGoogle Scholar
  73. Tilman D, May RR, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  74. Tontini L, Castellano S, Bonelli S, Balletto E (2003) Patterns of butterfly diversity above the timberline in the Italian Alps and Appennines. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, HeidelbergGoogle Scholar
  75. Van Swaay CAM, Warren MS (1999) Red data book of European butterflies (Rhopalocera), nature and environment no. 99. Council of Europe Publishing, StrasbourgGoogle Scholar
  76. Van Swaay CAM, Warren MS (2006) Prime butterfly areas of Europe: an initial selection of priority sites for conservation. J Insect Conserv 10:5–11CrossRefGoogle Scholar
  77. Van Swaay CAM, Cuttelod A, Collins S, Maes D, Munguira ML, Šašić M, Settele J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhoff I (2010) European red list of Butterfly. Publications Office of the European Union, LuxembourgGoogle Scholar
  78. Verity R (1940–1953) Le Farfalle diurne d’Italia, vol 5. Marzocco, FirenzeGoogle Scholar
  79. Warren MS (1985) The influence of shade on butterfly numbers in woodland rides, with special reference to the wood white Leptidea sinapis. Biol Conserv 33:147–164CrossRefGoogle Scholar
  80. Warren MS, Thomas JA (1992) Butterfly responses to coppicing. In: Buckley GP (ed) The ecological effects of coppice management. Chapman & Hall, London, pp 249–270Google Scholar
  81. Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MJ, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69PubMedCrossRefGoogle Scholar
  82. Weibull A, Östman O (2003) Species composition in agroecosystems: the effect of landscape, habitat, and farm management. Basic Appl Ecol 4:349–361CrossRefGoogle Scholar
  83. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615CrossRefGoogle Scholar
  84. Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biol 13:1873–1887CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Simona Bonelli
    • 1
    • 3
  • Cristiana Cerrato
    • 1
  • Nicola Loglisci
    • 2
  • Emilio Balletto
    • 1
  1. 1.Department of Animal and Human BiologyTurin UniversityTurinItaly
  2. 2.Regional Agency for Environmental Protection, ARPA PiemonteTurinItaly
  3. 3.Dipartimento di Biologia Animale e dell’UomoUniversità degli Studi di TorinoTorinoItaly

Personalised recommendations