Journal of Insect Conservation

, Volume 15, Issue 6, pp 823–832 | Cite as

Bridges as optical barriers and population disruptors for the mayfly Palingenia longicauda: an overlooked threat to freshwater biodiversity?

  • Kristóf Málnás
  • László Polyák
  • Éva Prill
  • Ramón Hegedüs
  • György Kriska
  • György Dévai
  • Gábor Horváth
  • Szabolcs LengyelEmail author


Freshwater biodiversity is declining faster than marine or terrestrial diversity, yet its drivers are much less known. Although dams were shown to negatively affect river habitats, fragmentation by bridges has received less attention and is not as well understood. We tested whether and how bridges present barriers to aquatic insects by studying mass swarmings of Palingenia longicauda mayflies on river Tisza (NE-Hungary). Behavioural observations showed that upon approaching the bridge, upstream-flying mayflies typically turned back and 86% of them never crossed the bridge. Lack of physical contact showed that the bridge was an optical, rather than a mechanical barrier for the polarotactic mayflies. Imaging polarimetry showed that the bridge disrupted the horizontally polarizing channel guiding the flight of mayflies above the river. Energy loss, demonstrated by calorimetry, and time constraints forced females to lay eggs only downstream from the bridge. Counts of larval skins shed by swarming individuals showed nearly 2 to 1 female per male downstream from the bridge, while sex ratio above the bridge was slightly male-biased. We suggest that the surplus of parthenogenetic females, that produce only female larvae, downstream from the bridge may have led to the observed sex-ratio bias since the construction of the bridge (1942). Our results demonstrate that bridges can be optical barriers for aquatic insects and can cause population-level impacts, such as biased sex ratios, in natural populations. Sex ratio biases due to bridges may decrease effective population size and genetic variability, which may have contributed to the recent extinction of this species from most of Europe.


Aquatic insects Dispersal Ephemeroptera: Palingeniidae Polarization vision Polarotaxis Energy use in insect flight Sex ratio 



We thank the Upper Tisza Inspectorate for Environment, Nature and Water for permits and Z. Barta for comments on the manuscript. Financial support was provided by a grant from the Hungarian Scientific Research Fund (OTKA K-6846) to GH and GK and by the BioFresh EU FP7 research programme ( to SL. Polarimetric equipment was provided by the Alexander von Humboldt Foundation, Germany to GH. RH was supported by a SCAR 6CI fellowship by the International Polar Foundation, and SL by a Bolyai Research Fellowship from the Hungarian Academy of Sciences and by two OTKA-Norway Financing Mechanism grants (NNG 78887, 85562) during manuscript preparation.

Supplementary material

10841_2011_9380_MOESM1_ESM.doc (2 mb)
Supplementary material 1 (DOC 2027 kb)

Supplementary material 2 (MPG 2560 kb)

Supplementary material 3 (MPG 6080 kb)

Supplementary material 4 (MPG 3072 kb)

Supplementary material 5 (MPG 5056 kb)

Supplementary material 6 (MPG 5312 kb)

Supplementary material 7 (MPG 3136 kb)


  1. Andrikovics S, Turcsányi I (2001) The Long-tailed Mayfly–Ecology of an endangered species, vol 10. Tisza Klub, SzolnokGoogle Scholar
  2. Barber-James HM, Gattolliat J-L, Sartori M, Hubbard MD (2008) Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater. Hydrobiologia 595:339–350CrossRefGoogle Scholar
  3. Bernáth B, Szedenics G, Wildermuth H, Horváth G (2002) How can dragonflies discern bright and dark waters from a distance? The degree of polarization of reflected light as a possible cue for dragonfly habitat selection. Freshw Biol 47:1707–1719CrossRefGoogle Scholar
  4. Bernáth B, Kriska G, Suhai B, Horváth G (2008) Wagtails (Aves: Motacillidae) as insect indicators on plastic sheets attracting polarotactic aquatic insects. Acta Zoologica Academiae Scientarum Hungaricae 54(Suppl 1):145–155Google Scholar
  5. Brittain JE, Saltveit SJ (1989) A review of the effect of river regulation on mayflies (Ephemeroptera). Regul Riv Res Manag 3:191–204CrossRefGoogle Scholar
  6. Brodskiy AK (1973) The swarming behavior of mayflies (Ephemeroptera). Entomol Rev 52:33–39Google Scholar
  7. Clutius A (1634) De Hemerobio sive Ephemero Insecto & Majali Verme. Opuscula duo singularia. I. De nuce medica II. Jacob Charpentier, AmsterdamGoogle Scholar
  8. Csabai Z, Boda P, Bernáth B, Kriska G, Horváth G (2006) A ‘polarisation sun-dial’ dictates the optimal time of day for dispersal by flying aquatic insects. Freshw Biol 51:1341–1350CrossRefGoogle Scholar
  9. Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Leveque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182PubMedCrossRefGoogle Scholar
  10. Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in the Northern third of the world. Science 266:753–762PubMedCrossRefGoogle Scholar
  11. Gillies MT, Knowles RJ (1990) Colonization of a parthenogenetic mayfly (Caenidae: Ephemeroptera) from Central Africa. In: Campbell IC (ed) Mayflies and Stoneflies. Kluwer Academic Publishers, Dordrecht, pp 341–345CrossRefGoogle Scholar
  12. Horváth G, Varjú D (1997) Polarization pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic insects. J Exp Biol 200:1155–1163Google Scholar
  13. Horváth G, Varjú D (2004) Polarized light in animal vision–polarization patterns in nature. Springer, HeidelbergGoogle Scholar
  14. Horváth G, Zeil J (1996) Kuwait oil lakes as insect traps. Nature 379:303–304CrossRefGoogle Scholar
  15. Horváth G, Bernáth B, Molnár G (1998) Dragonflies find crude oil visually more attractive than water: multiple-choice experiments on dragonfly polarotaxis. Naturwissenschaften 85:292–297CrossRefGoogle Scholar
  16. Horváth G, Majer J, Horváth L, Szivák I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100PubMedCrossRefGoogle Scholar
  17. Horváth G, Kriska G, Malik P, Robertson B (2009) Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ 7:317–325CrossRefGoogle Scholar
  18. Horváth G, Blahó M, Egri Á, Kriska G, Seres I, Robertson B (2010) Reducing the maladaptive attractiveness of solar panels to polarotactic insects. Conserv Biol 24:1644–1653PubMedCrossRefGoogle Scholar
  19. Kriska G, Horváth G, Andrikovics S (1998) Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. J Exp Biol 201:2273–2286PubMedGoogle Scholar
  20. Kriska G, Csabai Z, Boda P, Malik P, Horváth G (2006) Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarized signals. Proc R Soc B 273:1667–1671PubMedCrossRefGoogle Scholar
  21. Kriska G, Bernáth B, Horváth G (2007) Positive polaritaxis in a mayfly that never leaves the water surface: polarotactic water detention in Palingenia longicauda (Ephemeroptera). Naturwissenschaften 94:148–154PubMedCrossRefGoogle Scholar
  22. Kriska G, Bernáth B, Farkas R, Horváth G (2009) Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J Insect Physiol 55:1167–1173PubMedCrossRefGoogle Scholar
  23. Ladócsy K (1930) The mating flight of the Tisza mayfly (Palingenia longicauda, Oliv.) in 1929 in Szeged, part 2. Fishery 31:28–30Google Scholar
  24. Landolt P, Sartori M, Studemann D (1997) Palingenia longicauda (Ephemeroptera, Palingeniidae): from mating to the larvulae stage. In: Landolt P, Sartori M (eds) Ephemeroptera and plecoptera: biology-ecology-systematics. Mauron, Tinguely and Lachat SA, Fribourg, pp 15–20Google Scholar
  25. Lengyel S (1998) An overview of the literature on the biological effects of dams. Természetvédelmi Közlemények 7:19–32Google Scholar
  26. Lengyel S, Kiss B, Müller Z, Aradi C (2004) Colony location, colony structure, and population status of the Long-tailed Mayfly on certain sections of the upper Tisza river. Természetvédelmi Közlemények 11:233–240Google Scholar
  27. Lerner A, Meltser N, Sapir N, Erlick C, Shashar N, Broza M (2008) Reflected polarization guides chironomid females to oviposition sites. J Exp Biol 211:3536–3543PubMedCrossRefGoogle Scholar
  28. Ligon FK, Dietrich WE, Trush WJ (1995) Downstream ecological effects of dams. Bioscience 45:183–192CrossRefGoogle Scholar
  29. Malik P, Hegedüs R, Kriska G, Horváth G (2008) Imaging polarimetry of glass buildings: Why do vertical glass surfaces attract polarotactic insects? Appl Opt 47:4361–4374PubMedCrossRefGoogle Scholar
  30. Málnás K, Lengyel S, Dévai G (2005) Study of the factors influencing the occurrence of the larvae of the Long-tailed Mayfly [Palingenia longicauda (Olivier)]. Hidrológiai Közlöny 85:91–93Google Scholar
  31. Petts GE (1984) Impounded rivers: perspectives for ecological management. Wiley, ChichesterGoogle Scholar
  32. Prill É, Farkas A, Jakab T, Nagy SA, Dévai G (2008) Analysis of calorimetry results in dragonflies (Odonata). Hidrológiai Közlöny 6:158–161Google Scholar
  33. Russev B (1959) Vol de compensation pour la ponte de Palingenia longicauda (Oliv.) (Ephem.) contre courant du Danube. Comptes Rendus de l’Academie Bulgare des Sciences 12:165–168Google Scholar
  34. Salas M, Dudgeon D (1999) Parthenogenesis in some Hong Kong mayflies (Ephemeroptera). Memoirs Hong Konk Nat His Soc 22:165–169Google Scholar
  35. Sartori M, Landolt P (1998) Memorandum concernant la candidature de Palingenia longicauda (Olivier, 1791) (Insecta Ephemeroptera) a son inscription en annexe de la Convention de Berne. Document T-PVS (98) 15, Council of Europe, StrasbourgGoogle Scholar
  36. Sartori M, Keller L, Thomas AGB, Passera L (1992) Flight energetics in relation to sexual differences in the mating behaviour of a mayfly, Siphlonurus aestivalis. Oecologia 92:172–176CrossRefGoogle Scholar
  37. Sartori M, Landolt P, Lubini V, Ruffieux L (1995) Biological studies of Palingenia longicauda (Olivier) (Ephemeroptera: Palingeniidae) in one of its last European refuges–Abiotic characteristics and description of the habitat. In: Corkum LD, Ciborowski JJH (eds) Current directions in research on ephemeroptera. Canadian Scholars’ Press, Inc., Toronto, pp 263–272Google Scholar
  38. Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540CrossRefGoogle Scholar
  39. Schwind R (1995) Spectral regions in which aquatic insects see reflected polarized light. J Comp Physiol A 177:439–448CrossRefGoogle Scholar
  40. Soldán T, Putz M (2000) Karyotypes of some Central European mayflies (Ephemeroptera) and their contribution to phylogeny of the order. Acta Societas Zoologicae Bohemicae 64:437–445Google Scholar
  41. Sweeney BW, Vannote RL (1982) Population synchrony in mayflies: a predator satiation hypothesis. Evolution 36:810–821CrossRefGoogle Scholar
  42. Turcsányi I, Szentkirályi F, Bernáth B, Kádár F (2009) Flight of mayflies towards horizontally polarised and unpolarised light. Aquatic Insects 31(Suppl 1):301–310CrossRefGoogle Scholar
  43. Wehner R, Labhart T (2006) Polarization vision. In: Warrant EJ, Nilsson DE (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 291–348Google Scholar
  44. Wildermuth H (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85:297–302CrossRefGoogle Scholar
  45. Wildermuth H (2007) Polarotaktische Reaktionen con Coenagrion puella und Libellula quadrimaculata auf Erdbeerkulturen als ökologische Falle (Odonata: Coenagrionidae, Libellulidae). Libellula 26:143–150Google Scholar
  46. World Wildlife Fund (2008) Living Planet Report 2008. GlandGoogle Scholar
  47. Zwick P (1992) Stream habitat fragmentation–a threat to biodiversity. Biodivers Conserv 1:80–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kristóf Málnás
    • 1
  • László Polyák
    • 2
  • Éva Prill
    • 1
  • Ramón Hegedüs
    • 3
  • György Kriska
    • 4
  • György Dévai
    • 1
  • Gábor Horváth
    • 5
  • Szabolcs Lengyel
    • 2
    Email author
  1. 1.Department of HydrobiologyUniversity of DebrecenDebrecenHungary
  2. 2.Department of EcologyUniversity of DebrecenDebrecenHungary
  3. 3.Computer Vision and Robotics GroupUniversity of GironaGironaSpain
  4. 4.Group for Methodology in Biology Teaching, Biological InstituteEötvös UniversityBudapestHungary
  5. 5.Environmental Optics Laboratory, Department of Biological Physics, Physical InstituteEötvös UniversityBudapestHungary

Personalised recommendations